Polygones de toundra sur le versant nord de l'Alaska. Avec la fonte du pergélisol, cette zone est susceptible d'être une source de carbone atmosphérique avant 2100. © Nasa, JPL-Caltech, Charles Miller

Planète

Le pergélisol risque de libérer du CO2 en quantités gigantesques

ActualitéClassé sous :climatologie , pergélisol , changement climatique

-

À cause du réchauffement climatique, le pergélisol arctique pourrait libérer, d'ici 300 ans (cumulés), 10 fois plus de gaz carbonique (CO2) que ne l'a fait l'humanité en 2016. De quoi rendre plus urgentes encore les mesures pour limiter ce réchauffement.

La fonte du pergélisol favorise le réchauffement climatique  Le pergélisol, ou permafrost en anglais, regroupe les sols de notre planète qui sont gelés en permanence. Il est menacé de fonte définitive par le réchauffement climatique. Sa disparition inquiète les scientifiques. Le Cnes nous en dit plus au cours de cette vidéo. 

Les climatologues savent bien que l'une des clés de la prédiction du climat de la Terre passe par la connaissance de toutes les sources et puits de gaz à effet de serre, c'est-à-dire des quantités de ces gaz qui peuvent être émises ou capturées au cours du temps. Ils s'interrogent par exemple à propos du méthane (CH4) qui se trouve sous forme de clathrates en bordure des océans ou encore à propos du gaz carbonique (CO2) qui peut se trouver dissous dans l'océan.

Ce même CO2 (tout comme le méthane) peut s'accumuler dans les sols, y compris dans les régions arctiques. Comme ces dernières sont en train de se réchauffer, les chercheurs tentent d'évaluer à quel point cela va affecter le climat au cours de ce siècle et des prochains. Il s'agit d'éléments à prendre en compte pour évaluer au plus juste notre futur et le temps qu'il nous est donné pour effectuer une transition énergétique. Celle-ci sera basée sur l'énergie nucléaire et les énergies renouvelables si nous prenons les bonnes décisions.

Une équipe de chercheurs, menée par Nicholas Parazoo, du célèbre Jet Propulsion Laboratory de la Nasa, à Pasadena, en Californie, vient d'ailleurs de publier un article à ce sujet dans le journal The Cryosphere. Il s'agissait d'évaluer la stabilité du carbone piégé dans les pergélisols des régions polaires en Alaska et en Sibérie. Ce travail a conduit à une découverte surprenante qui laisse penser qu'au cours des 300 prochaines années cumulées, du fait du réchauffement climatique actuel, jusqu'à 10 fois la quantité de gaz carbonique injectée dans l'atmosphère par l'activité de l'humanité en 2016 pourrait être également libérée.

Le pergélisol (ou permafrost) est un sol gelé sur une grande épaisseur qui peut fondre en surface durant l'été. La matière organique qu'il contient se décompose alors et le carbone s'échappe sous forme de CO2 (gaz carbonique). Il est également soumis à l'érosion, laquelle augmente quand le climat se réchauffe. © Soil Science, Flickr, CC by 2.0

1.700 milliards de tonnes de carbone dans le pergélisol arctique

Le pergélisol en Arctique est en train de se déstabiliser dans les régions sud et il le sera bientôt dans les régions nord ; ainsi, d'ici 40 à 60 ans, il deviendra une source permanente de CO2. C'est ce que disent en tout cas les modèles numériques du Centre national pour la recherche atmosphérique, à Boulder, au Colorado (États-Unis), lorsqu'on les nourrit de données sur les températures du sol de ces régions polaires, comme l'ont fait Parazoo et ses collègues.

Rappelons que le pergélisol (permafrost, en anglais) est un sol qui reste gelé pendant des années, voire des millénaires, sous la couche arable. Il contient des matières organiques riches en carbone, comme des feuilles ou des mousses, qui ont gelé sans se décomposer et qui s'y sont accumulées depuis la dernière glaciation. À mesure que la température de l'air dans l'Arctique fait fondre le pergélisol, cette matière organique se décompose et libère son carbone dans l'atmosphère sous forme de CO2 ou de CH4. Elle pourrait représenter environ 1.700 milliards de tonnes de carbone, soit deux fois plus que n'en contient actuellement l'atmosphère.

Paradoxalement, et c'est le côté surprenant de l'étude des climatologues, les régions sud de l'Arctique ont des sols qui sont déjà en train de se déstabiliser, mais des plantes y croissent et capturent ainsi du CO2 atmosphérique en effectuant la photosynthèse. Ce sont finalement les régions les plus froides, au nord, qui vont se mettre dans quelques décennies à libérer du gaz carbonique en premier alors qu'elles se réchauffent plus lentement. Mais vers la fin du prochain siècle, le bilan sera finalement positif pour tout le pergélisol arctique, qui représente environ la superficie du Canada dans l'hémisphère nord.

Il est clair que c'est une raison de plus de se débarrasser des énergies fossiles le plus vite possible. Espérons que nous pourrons maîtriser la fusion nucléaire avant les années 2050.

  • La dernière glaciation a conduit à l'accumulation de grandes quantités de matière végétale dans le pergélisol arctique.
  • Le réchauffement climatique va faire fondre au moins en partie ce pergélisol conduisant à la dégradation de cette matière organique sous forme de gaz carbonique et de méthane, des gaz à effet de serre.
  • Une étude estime que ce pergélisol arctique pourrait libérer, d'ici 300 ans cumulées, 10 fois plus de gaz carbonique que l'humanité en 2016 à cause du réchauffement climatique.
Pour en savoir plus

Le CO2 du pergélisol pourrait être en partie séquestré

Article CNRS publié le 10/09/2015

Le pergélisol de notre planète, cet épais sol gelé, contient du gaz carbonique enfoui sous forme de matière organique depuis la dernière période glaciaire, il y a environ 8.000 ans. Or, le réchauffement climatique a provoqué une libération de ce carbone. Une libération qui pourrait être atténuée selon des chercheurs, comme le montrent les grandes quantités de carbone charriées par le fleuve Mackenzie, au nord du Canada. Réchauffé, le pergélisol s'érode en effet plus facilement et la matière organique se retrouve durablement piégée... dans l'océan Arctique.

Le Mackenzie, au nord du Canada, est l'un des principaux fleuves de la planète. Son bassin versant a une superficie de 1.787.000 km2, il apporte ainsi chaque année à l'océan Arctique 100 millions de tonnes de sédiments qui se déposent sur les marges de la mer de Beaufort. Les rivières exportent en effet des produits solides provenant des sols en pente de leur bassin versant. Ces sédiments sont particulièrement riches en matière organique dont la nature et l'origine étaient jusqu'à présent assez mal connues.

Depuis plusieurs années, ce fleuve fait l'objet d'études approfondies. Un consortium international a ainsi échantillonné à plusieurs reprises des sédiments transportés par le fleuve à différentes profondeurs dans le chenal et mesuré l'abondance des échantillons en carbone 14 (14C). Les chercheurs ont ainsi constaté que la matière organique transportée par le fleuve Mackenzie jusqu'à l'océan était pauvre en carbone 14, c'est-à-dire relativement ancienne.

En complétant leurs analyses à l'aide d'autres traceurs (isotopes 12 et 13 du carbone et rapport azote/carbone), les chercheurs ont montré qu'environ 10 à 30 % du carbone transporté par le fleuve était suffisamment ancien pour ne plus contenir de carbone 14 et que ce carbone ancien provenait de l'érosion de roches sédimentaires riches en matière organique et âgées de plusieurs centaines de millions d'années, dont la présence est bien documentée dans le bassin du Mackenzie. Ils ont également montré que les 70 à 90 % de carbone organique restant (du carbone « moderne » contenant du 14C) provenaient d'un mélange de matière organique, récemment fabriquée par les végétaux, et de matière organique plus ancienne vieille de 8.000 à 9.000 ans, une époque correspondant au maximum d'extension des marécages, tourbières et sols, riches en matière organique, formés après le retrait de la calotte glaciaire qui recouvrait le Canada lors du dernier âge glaciaire et aujourd'hui gelés.

À son embouchure, le fleuve Mackenzie, au Canada, transporte 2,2 millions de tonnes de carbone organique moderne à l’océan Arctique. © Robert Hilton, Durham University

Du carbone naturellement enfoui dans l'océan

Une des menaces du changement climatique est la fonte du pergélisol (sol gelé en permanence des zones subarctiques et arctiques) avec pour conséquence la décomposition en gaz carbonique (CO2) des énormes quantités de matière organique qui y sont piégées. Les sols gelés de la planète contiennent en effet deux fois plus de CO2 que n'en contenait l'atmosphère de l'époque préindustrielle. Or, cette étude montre qu'en fait une partie de la matière organique du pergélisol est emportée jusque dans les sédiments marins, en raison d'une érosion accrue des sols devenus plus instables et que, ce faisant, elle échappe à cette décomposition.

Afin d'étudier le devenir à long terme de la matière organique fluviale ayant atteint l'océan, les chercheurs ont conduit les mêmes analyses que précédemment dans une carotte sédimentaire prélevée dans le delta du fleuve. Ils ont ainsi pu montrer qu'en mer, 65 à 100 % de la matière organique fluviale était préservée de la décomposition, un taux important permis par la combinaison de deux facteurs : des températures faibles et un taux de sédimentation élevé au débouché du fleuve. L'érosion des sols gelés des hautes latitudes, accentuée par leur fonte, et le transport vers l'océan de la matière organique qu'ils renferment sont donc des moyens efficaces pour la planète, non seulement de diminuer le taux de décomposition en CO2 de la matière organique du pergélisol, mais aussi d'enfouir dans l'océan, pendant plusieurs centaines de milliers d'années, le carbone qui avait été piégé dans le pergélisol après la dernière période glaciaire, il y a 8.000 ans environ.

Grâce à des estimations récentes des flux de sédiments transportés par le fleuve Mackenzie, les chercheurs ont calculé que 2,2 millions de tonnes de carbone organique moderne étaient transportées chaque année à l'océan Arctique. Ce flux est supérieur aux apports cumulés des autres grands fleuves arctiques (Ob, Yenisei, Lena, Indigirka et Kolyma). Il n'est évidemment pas suffisant pour contrebalancer les émissions anthropiques de CO2 mais il est suffisamment important pour avoir joué (et pour jouer encore) un rôle dans le couplage entre climat et cycle du carbone aux hautes latitudes.

Abonnez-vous à la lettre d'information La quotidienne : nos dernières actualités du jour.

!

Merci pour votre inscription.
Heureux de vous compter parmi nos lecteurs !