La conférence de presse de la Nasa du 24 juillet a dévoilé l'atmosphère de Pluton, photographiée en contre-jour 10 jours plus tôt, dans la foulée du survol historique de New Horizons. L'équipe scientifique de la mission a également présenté de nouvelles images détaillées de la zone approchée par la sonde à quelque 12.500 km, le 14 juillet 2015 et désormais appelée « Le Cœur » ou région Tombaugh. On y découvre des dépôts de glace visqueuse et de rares cratères sur le point d'être remplis.
« Ma mâchoire touchait presque le sol lorsque j'ai vu cette première image d'une atmosphère d'un corps de la ceinture de Kuiper, s'est exclamé Alan Stern qui dirige la mission au SwRI (Southwest Research Institute). Cela nous rappelle que l'exploration spatiale nous apporte plus que des découvertes incroyables, elle nous livre une incroyable beauté ». Longtemps apparue floue sur les images des plus grands télescopes terrestres et spatiaux, Pluton a maintenant un visage grâce aux images transmises au compte-gouttes par New Horizons. À raison d'un ou deux kilobits par seconde, il faudra tout de même seize longs mois pour transférer les quelque 50 gigabits de données scientifiques recueillies au cours des heures qui ont précédé et suivi le survol historique de la planète naine, le 14 juillet 2015. L'équipe de la mission compose ainsi, par petites touches et avec une résolution inégalée, un nouveau portrait de l'ex-neuvième planète du Système solaire. Les découvertes s'accumulent.
« Les images de Pluton sont spectaculaires, a déclaré John Grunsfeld (administrateur associé à la direction des missions scientifiques de la Nasa), en ouverture de la dernière présentation des résultats aux médias, le 24 juillet. Nous savions qu'une mission vers Pluton apporterait des surprises, mais maintenant -- 10 jours après cette approche au plus près de sa surface -- nous pouvons dire que nos attentes ont été surpassées. Avec des glaces fluides, une chimie exotique en surface, des chaines de montagnes et de vastes brumes, Pluton montre une géologie planétaire diverse vraiment passionnante ».
Des vapeurs jusqu’à 130 km d’altitude
Au cours de la conférence de presse, Alan Stern et son équipe ont dévoilé l'atmosphère de la planète naine. Celle-ci a été photographiée en contre-jour par le télescope Lorri (Long Range Reconnaissance Imager) sept heures après le survol au plus proche. Les chercheurs n'ont pas caché leur étonnement en découvrant des vapeurs s'élèvant jusqu'à 130 km au-dessus de la surface. « C'est cinq fois plus que ce à quoi on s'attendait », a expliqué Michael Summers (George Mason University à Fairfax, Virginie), rappelant que cela faisait plus de 25 ans que les chercheurs étudient l'atmosphère de Pluton et modélisent les processus qui l'entretiennent. « Maintenant, nous pouvons la voir ! Il y a des couches de brumes et cela nous montre des structures et la météo. Il y a une couche à environ 50 km puis une autre autour de 80 km au-dessus de la surface. »
« Ces brumes détectées sur cette image [voir ci-dessus, NDLR], a-t-il poursuivi, sont un élément clé dans la création des composés d'hydrocarbures complexes qui donnent à la surface de Pluton sa teinte rougeâtre. » En effet, les modèles développés prévoient que le rayonnement ultraviolet du Soleil brise les molécules de méthane présentes dans sa haute atmosphère. Ce phénomène provoque la formation d'éthylène et d'acétylène que New Horizons a d'ailleurs détecté. En tombant et en se refroidissant dans les basses couches de l'atmosphère, ces hydrocarbures se condensent en glace et forment la brume observée. Ensuite, le rayonnement solaire les convertit en tholins qui sont tenus pour responsables des couleurs sombres de ce petit monde de 2.370 km de diamètre.
Des glaces récentes qui glissent comme les glaciers terrestres
Autres merveilles dévoilées vendredi 24 juillet : de nouvelles images détaillées de la plaine baptisée Spoutnik, située dans la partie ouest du « Cœur », nommé désormais la région Tombaugh (Tombaugh Regio). Les chercheurs ont décrit une surface en mouvement avec des couches de glace qui semblent couler. « On avait seulement vu des surfaces comme celles-là sur des mondes actifs comme la Terre et Mars », a déclaré à leurs sujets John Spencer (SwRI). Les images et spectres collectés par l'instrument Ralph témoignent de dépôts relativement récents et uniques de glace de monoxyde de carbone. De la glace d'azote et de méthane a également été détectée, dans des proportions variables.
Comme cela a déjà été évoqué, la plaine glaciaire apparaît relativement jeune (100 millions d'années au maximum) car pas un cratère d'impact n'est visible. Les rares à être observés sont en lisière, au sud de cette région survolée par New Horizons. On les découvre en partie remplis de glace... « Dans la région méridionale du Cœur, adjacent aux sombres régions équatoriales, les terrains anciens et très cratérisés ont été plus envahis par de nouveaux dépôts de glaces », a commenté le chef adjoint de l'équipe de géologie et géophysique de la mission, Bill McKinnon (université Washington de Saint-Louis). « À la température minimale de Pluton de - 234 °C, ces glaces peuvent glisser comme un glacier ».
L'atmosphère, essentiellement composée d'azote, de Pluton s'échappe continuellement, et cela depuis ses origines, il y a 4,5 milliards d'années. Son Cœur saigne de la glace. Les chercheurs ignorent encore de quelle façon cela se produit. Ces observations témoignent à nouveau d'un monde actif et complexe qui n'a de cesse de changer au fil de ses saisons, calées sur son orbite de plus de 247 ans. Pluton n'a donc rien d'un corps figé par le froid qui règne dans cette région du Système solaire, endormi, voire éteint, comme on pourrait se le figurer.
Le cœur de Pluton ou la région Tombaugh Le « cœur de Pluton » est une région glacée en forme de cœur et d'environ 2.000 km de large. Elle a été baptisée « région Tombaugh », du nom de Clyde Tombaugh, découvreur de Pluton en 1930 (et décédé en 1997). Le lobe ouest (à gauche de l'image) est formé de glace de monoxyde de carbone (CO) et comprend la plaine Spoutnik. © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
La plaine Spoutnik, une des plus jeunes du Système solaire La plaine Spoutnik (du nom du premier satellite artificiel de la Terre, Spoutnik 1, lancé en 1957 par l'URSS), dépourvue de cratères, est une des plus jeunes du Système solaire : elle ne peut avoir plus de cent millions d'années. Des structures de 20 km environ sont entourées par des sortes de sillons, comportant par endroits de la matière sombre. On ne sait pas comment elles ont été formées. Peut-être par sublimation de glace, comme un sol de boue se craquelle après l'évaporation de l'eau. L'image a été acquise le 14 juillet par le télescope Lorri à 77.000 km de distance. © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Le vent de Pluton Sur la plaine Spoutnik, le télescope Lorri a repéré des formes noires sur la glace blanche, flanquées de sortes d'ombres allongées. Il s'agirait en fait de poussières emportées par le vent de l'atmosphère ténue de Pluton (un millionième de la pression terrestre). De ces taches (wind streaks sur l'image), on peut déduire la possible direction du vent (Inferred wind direction). La barre d'échelle représente 20 miles, soit 32 km. © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Les deux lobes du cœur de Pluton Les deux lobes de la plaine Spoutnik vus à 450.000 km. La partie ouest (à gauche) est recouverte par une couche de glace plus épaisse qu'à l'est. Il est vraisemblable que le lobe ouest soit une sorte de réservoir et que la glace se déplace vers l'est (par l'action du vent, peut-être). Résolution : 2,2 km/pixel. © Nasa/JHUAPL/SwRI
Des glaces en mouvement Au nord de la plaine Spoutnik, la glace d'azote (Nitrogen ice flow) glisse vers la région rocailleuse et cratérisée (Rugged cratered terrain). En amont, la couverture de glace est craquelée, formant des structures polygonales (Polygonal cells). La barre d'échelle indique 32 km. © Nasa/JHUAPL/SwRI
Les montagnes de glace de Pluton À 77.000 km de distance, le télescope Lorri a observé d'étonnantes montagnes d'environ 3.500 m de hauteur. Elles sont faites... d'eau glacée. Les glaces d'azote et de méthane, communes sur Pluton, sont trop fragiles pour former de telles structures. Les planétologues s'interrogent sur la source d'énergie qui peut maintenir une telle activité géologique. © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Les montagnes de la plaine Spoutnik Au sud de la plaine glacée Spoutnik, avec ses structures polygonales (Polygons), et au nord de la région Cthulhu, se dressent de hautes montagnes, nommées en l'honneur des deux vainqueurs de l'Everest : les monts Norgay et les monts Hillary. La couche de glace y est plus fine (thin ice sheet) et emplit un cratère (infilled crater). La barre d'échelle indique 64 km. © Nasa/JHUAPL/SwRI
De curieuses montagnes au bord d'une plaine de glace Des montagnes de glaces vues par Lorri à 77.000 km de distance, en bordure ouest de la plaine Spoutnik, de formes très variées et d'une hauteur de 1 à 1,5 km. Sans doute sont-elles faites de glace d'eau, tandis que la neige blanche est de la glace de monoxyde de carbone. Les surfaces sombres sont peut-être des dépôts de tholines. © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Le ciel bleu de Pluton L'atmosphère de Pluton vue en contre-jour par la caméra multispectrale MVIC de l'instrument Ralph. Les couleurs ont été reconstituées pour donner à peu près ce qu'aurait vu un œil humain. La couleur bleue viendrait de poussières faites de tholines, molécules très réactives contenant du carbone et de l'azote. © Nasa/JHUAPL/SwRI
La drôle d'atmosphère de Pluton Le vent solaire (Solar wind) heurte l'atmosphère de Pluton, qui s'étend loin du sol, produisant une onde de choc (Shock). Ce vent solaire est ralenti et dévié (Slowed and deflected solar wind). Derrière, une partie de l'atmosphère, essentiellement faite d'azote, s'échappe dans l'espace (Pluto's escaping nitrogen atmosphere). Ce schéma a été réalisé grâce aux données recueillies par l'instrument Swap (Solar Wind Around Pluto). © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Le Soleil révèle l'atmosphère de Pluton L'atmosphère de Pluton paraît structurée en deux couches, visualisées ici par la coloration (fausse) : la première au-dessus de la surface (en rouge-orange) jusqu'à 50 km et la seconde à 83 km (en vert), avec une zone de transition entre les deux. © Nasa/JHUAPL/SwRI
Le pôle noir du satellite Charon Vu le 13 juillet 2015 à 466.000 km, le satellite Charon (1.207 km de diamètre) montre un visage diversifié... et jeune. Sur cette image (compressée), on voit en effet peu de cratères. Des reliefs importants apparaissent, comme cet immense canyon d'environ un millier de kilomètres, visible en haut à droite de l'image, et profond, sans doute, de 7 à 9 km. Au pôle nord, une région sombre, aux bords flous (provisoirement baptisée Mordor par l'équipe de New Horizons, du nom d'une région fictive décrite dans le Seigneur des anneaux), est probablement un dépôt de matière carbonée. © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Le couple Pluton-Charon Deux images montrant Charon (à gauche) et Pluton (à droite) observés le 11 juillet à 4 millions de kilomètres. La sonde New Horizons ayant survolé, le 14 juillet, la partie claire de Pluton, ici à gauche sur la planète, cette face ne sera jamais vue en meilleure résolution. De même pour Charon. © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Pluton et Charon en – fausses – couleurs Des couleurs artificielles ajoutées en fonction des informations de spectrométrie montrent les compositions des surfaces de Pluton (à gauche) et de Charon (à droite) sur deux images du 13 juillet (la distance entre les deux est en réalité bien plus grande). Le cœur de Pluton apparaît en deux lobes de teintes différentes. Sur Charon, la région sombre apparaît ici rougeâtre. © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Charon n'a pas d'atmosphère Quand New Horizons est passée dans l'ombre de Charon, l'instrument Alice a analysé l'occultation de la lumière solaire. La chute et la réapparition de cette lumière (courbe rouge) sont brutales. Première conclusion : Charon n'a pas d'atmosphère détectable. © Nasa/JHUAPL/SwRI
Hydre, le plus grand des petits satellites de Pluton Hydre (Hydra en anglais), repéré par le télescope spatial Hubble en 2005, n'est pas sphérique. Cette image prise par l'instrument Lorri de New Horizons à 640.000 km a permis de préciser ses dimensions : 43 x 33 km. Un pixel de l'image représente 6 km. © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Nix, troisième satellite de Pluton Le télescope Lorri, à 590.000 km de distance, a pris le 13 juillet cette image de Nix, le troisième satellite de Pluton en taille, après Charon (1.200 km de diamètre) et Hydre (43 x 33 km), découvert en 2005 par le télescope spatial Hubble. Chaque pixel représente 6 km. © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Les images de Pluton avant New Horizons... Des images du passé. À gauche, une cartographie réalisée en 2000 à partir de nombreuses données, dont celles de Hubble et celles venues des occultations de Pluton par Charon dans les années 1980. À droite, la meilleure représentation existant avant le survol, une cartographie réalisée grâce à l'instrument ACS installé par des astronautes sur Hubble 2002. La petite image en haut et au milieu est la photographie brute que Hubble donne de Pluton. New Horizons a complètement changé notre image de Pluton et de son monde ! © Nasa / Eliot Young, Richard Binzel, Keenan Crane, 2000 / SwRi / Montage Futura-Sciences
Pluton et le méthane gazeux En 2008, soit avant le passage de la sonde New Horizons en 2015, le spectre de Pluton avait été réalisé grâce au VLT (Very Large Telescope). Il a révélé 17 raies individuelles du méthane gazeux, permettant d'évaluer son abondance (de 0,5 % par rapport à l'azote) et sa température, environ 90 K. Cette vue d'artiste représente l'atmosphère de Pluton. À gauche se trouve Charon, principal satellite de la planète naine. © L. Calçada, ESO
Vue de la surface de Pluton avant New Horizons Les deux grandes images principales donnent un premier aperçu de la surface de Pluton. Elles ont été obtenues après traitement informatique des deux petites images du haut, réalisées en 1996 par le télescope Hubble. © Alan Stern (Southwest Research Institute), Marc Buie (Lowell Observatory), Nasa, ESA