Le simulateur de masse d’ExoMars 2020 a été largué depuis un hélicoptère à une altitude de 1,2 kilomètre. Le parachute de 35 mètres s’est déployé, après le décrochage du parachute pilote de 4,8 m, et a été utilisé pendant environ deux minutes et demie jusqu'au sol. © Esa

Sciences

ExoMars 2020 : nouvel échec des tests de parachutes à un an du lancement

ActualitéClassé sous :mars , esa , Exploration robotique

Après deux essais ratés des parachutes du rover martien Rosalind Franklin, l'Agence spatiale européenne et le consortium industriel européen qui le réalise sont dans l'expectative. François Spoto, le responsable ESA de la mission ExoMars 2020, nous explique les raisons de ces ratés. Il se veut aussi confiant pour les deux prochains essais qui décideront du sort du rover Rosalind Franklin dont le lancement à destination de Mars est prévu en juillet 2020.

À moins d'un an de son lancement à destination de Mars, le rover ExoMars Rosalind Franklin de l'Agence spatiale européenne (ESA) ne sait toujours pas atterrir ! Les parachutes qu'il doit utiliser pour freiner sa descente dans l'atmosphère martienne ne sont toujours pas qualifiés. Après un premier essai raté de ses parachutes en mai, le deuxième essai, qui s'est déroulé le 5 août, s'est aussi soldé par un échec. Cette situation est d'autant plus préoccupante que l'équipe en charge des parachutes avait tenu compte des loupés du premier test et apporté des adaptations à la conception des parachutes et des sacs. Visiblement, cela n'a pas suffi.

Interrogé, François Spoto, le responsable ESA de la mission ExoMars confirme faire face à « un problème de pliage et de coutures combinés aux choix des forces de résistance de ces coutures qui sont conçues pour lâcher dans le bon ordre et au bon moment afin que le parachute sorte correctement de son sac. La réalisation des parachutes et de leur pliage est une tâche artisanale extrêmement pointue et délicate ».

À première vue, et en attendant une analyse plus poussée du matériel et des données récupérées en fin de test, il apparait de nouveau que « la séquence de commandes s'est déroulée correctement ». Cependant, des dommages à la canopée ont été encore « observés avant que le parachute ne s'ouvre et subisse une pression maximale ». En conséquence, la descente du module « n'était freinée que par le seul parachute pilote ». Autrement dit, le rover se serait écrasé sur Mars !

Pour comprendre la difficulté de la tâche, il faut savoir que le rover Rosalind Franklin n'utilisera pas un seul parachute pour freiner sa descente mais un « système incluant plusieurs parachutes à déployer séquentiellement à des vitesses supersoniques et subsoniques » ! On compte deux parachutes principaux de 15 et 35 mètres de diamètre et pour chacun, un parachute pilote de 1,5 mètre. Le parachute de 35 mètres sera le plus grand jamais déployé sur Mars. Quant au parachute de 15 mètres, il est de même conception que ceux utilisés pour ExoMars 2016 et la sonde Huygens de l'ESA qui a atterri sur Titan, la plus grande lune de Saturne en 2005. Ce choix d'architecture complexe a été choisi en raison de la « masse et de la résistance mécanique du module de descente et des capacités de freinage offertes par le système de propulsion russe en charge du freinage final ».

La réalisation des parachutes et de leur pliage est une tâche artisanale extrêmement pointue et délicate

Ce qui semble poser problème est « l'extraction des lignes et des parachutes du sac toroïdal dans lequel ils sont logés après un pliage compact très délicat ». Concrètement, les parachutes principaux sont contenus dans des sacs avec trois compartiments pour « faciliter leur déploiement dans le bon ordre : d'abord les câbles et brides, puis l'auvent ». À cette contrainte, s'ajoute celle de la vitesse à laquelle s'effectue l'ouverture des parachutes : à plus de 1200 kilomètres par heure pour le premier parachute à s'ouvrir, celui de 15 m, et à moins de 1.000 kilomètres par heure pour le parachute de 35 m.

Le temps presse

Il ne reste plus beaucoup de temps à l'ESA et à son consortium industriel européen pour trouver une solution. Bien que la fenêtre de tir s'ouvre le 26 juillet et se ferme le 11 août 2020, la dernière revue d'aptitude est programmée en avril 2020. D'ici là, deux autres campagne d'essais sont encore prévues « où un composite représentant le module de descente sera largué d'un ballon stratosphérique à environ 30 km d'altitude : en fin d'année pour le parachute principal de 15 m et début 2020 pour celui de 35 mètres ». Ces deux tests sont planifiés aux États-Unis, dans l'État de l'Oregon en raison de la fermeture saisonnière de la base Esrange, en Suède, qui ne redeviendra disponible pour de telles campagnes qu'en mai 2020.

L'ESA a également prévu de rencontrer la Nasa et le Jet Propulsion Laboratory afin de discuter de ces problèmes cruciaux avec l'espoir de bénéficier de l'expérience américaine dans le domaine de la décélération dans l'atmosphère martienne.

  • Pour freiner dans l'atmosphère, Exomars 2020 utilisera un système à plusieurs parachutes, dont deux principaux de 15 et 35 mètres.
  • Ces parachutes seront à déployer séquentiellement à des vitesses supersoniques et subsoniques.
  • Les essais de ces parachutes ne se déroulent pas aussi bien que prévu.
Pour en savoir plus

ExoMars 2020 : les énormes parachutes du rover doivent être testés sur Terre

Article de Rémy Decourt, publié le 04/04/2018

Il faudra quatre parachutes ouverts successivement pour poser en douceur Exomars 2020. L'un d'eux sera le grand jamais déployé sur la Planète rouge. L'Agence spatiale européenne a commencé à les tester dans l'atmosphère terrestre.

Atterrir sur Mars n'est pas une mince affaire. Plusieurs techniques ont été essayées et de nombreuses sondes se sont écrasées. Sur cette planète, les rétrofusées des missions lunaires, par exemple, conviennent mal. En raison de la gravité, en effet, la quantité d'ergols nécessaire pour freiner est trop importante. Et contrairement aux cas de la Terre, de Vénus ou de Titan, l'atmosphère martienne est ténue. À 20 kilomètres de la surface, la vitesse de descente est encore de quelques kilomètres par seconde, contre environ 500 mètres par seconde sur Terre. Il ne reste du coup que quelques secondes pour freiner et atterrir. Le freinage doit donc être brutal. C'est pourquoi les agences spatiales préfèrent utiliser aujourd'hui des boucliers thermiques couplés à des parachutes avec une petite phase finale propulsive. Depuis Curiosity en 2013, la Nasa ajoute une grue à cette séquence.

En mars 2021, après un lancement en juillet 2020, la mission ExoMars 2020 se posera sur Mars, soit sur Oxia Planum, une vaste plaine datant de quatre milliards d'années, soit dans Mawrth Vallis, un grand chenal d'écoulement, avec d'épaisses couches de sédiments sur les plateaux alentour. La sélection du site est prévue en novembre.

Les différents parachutes du système de freinage et d'atterrissage d'ExoMars 2020 et la séquence de leur déploiement. © ESA

Un des parachutes déjà utilisé sur Mars et Titan

Cette mission de l'Agence spatiale européenne et de Roscosmos, réalisée sous la maîtrise d'œuvre de Thales Alenia Space, utilisera le plus grand parachute jamais utilisé sur Mars. D'un diamètre de 35 mètres, il a été testé début mars, à Kiruna, dans le nord de la Suède, à des températures négatives. Ce parachute est de conception annulaire, de façon à augmenter la traînée à des vitesses faibles. Cet essai, qui s'est bien déroulé, sera suivi d'autres à des altitudes plus élevées. Certains seront même réalisés depuis un ballon stratosphérique, à près de 30 kilomètres d'altitude, où la faible pression simule bien l'atmosphère martienne.

La séquence complète, qui mettra en jeu les quatre parachutes (deux principaux avec pour chacun un parachute pilote), sera également testée. L'utilisation de deux parachutes principaux n'a rien à voir avec de la redondance. Elle s'explique par la masse plus importante d'ExoMars 2020, quelque 2.000 kg, contre 600 kg pour la mission précédente (ExoMars 2016) qui n'avait eu besoin que d'un seul parachute.

L'ensemble des quatre parachutes a une masse de 195 kg. À lui seul, celui de 35 m accuse 70 kg, et compte 5 kilomètres de cordes ! Ces 195 kg sont à comparer aux 310 kg du rover et aux 26 petits kilogrammes des instruments scientifiques. Quant au premier parachute de 15 mètres, il est de même conception que ceux utilisés pour ExoMars 2016 et la sonde Huygens de l'ESA qui a atterri sur Titan, la plus grande lune de Saturne, en 2005. Il sera déployé à des vitesses supersoniques alors que le deuxième parachute le sera à des vitesses subsoniques.

L'atterrissage d'ExoMars 2020 comportera également une petite phase propulsive, une fois largué le dernier parachute (celui de 35 mètres). Au moment du contact, un système d'amortissement réduira le choc de la plateforme d'atterrissage.


ExoMars : l’Esa teste des parachutes pour l'atterrissage

Article de Rémy Decourt publié le 07/10/2013

L'Agence spatiale européenne partira à la conquête de la planète Mars avec deux missions scientifiques et technologiques ambitieuses, ExoMars 2016 et 2018. Encore faut-il réussir l'atterrissage. L'Europe ne l'a jamais fait mais s'y prépare. Des parachutes viennent d'être testés, qui seront utilisés pour freiner les modules de rentrée des missions.

À l'automne 2016, l'Europe devrait débarquer sur Mars et poser le démonstrateur EDM d'entrée, de descente et d'atterrissage d'ExoMars 2016. Il doit démontrer que l'Agence spatiale européenne (Esa) est capable de poser une charge utile sur la Planète rouge. Si elle réussit, ce sera une grande première. Sa seule tentative, Beagle 2 en décembre 2003, s'est soldée par un échec sans que l'on sache ce qui est advenu de la sonde britannique d'une soixantaine de kilogrammes, très vraisemblablement écrasée.

Le DTV d'Arca (Drop Test Vehicle) qui sera utilisé pour tester le parachute des modules de descente d'ExoMars 2016 et 2018. © Arca

L’Esa teste des parachutes martiens

Pour la mission de 2016, l'EDM entrera dans l'atmosphère martienne à une altitude de 120 km à la vitesse de 5,8 km par seconde. La chétive atmosphère qui entoure Mars sera suffisante pour ralentir l'engin, alors protégé par un bouclier thermique, jusqu'à Mach 2. Dès que cette vitesse sera atteinte, un parachute se déploiera pour réduire la vitesse de l'EDM à Mach 1. L'atterrissage à proprement parler se fera à l'aide de 9 rétrofusées et d'un système radar altimètre Doppler.

En 2018, le module de descente sera fourni par la Russie, qui participe au programme en remplacement de la Nasa. Il devra adapter les technologies de l'EDM d'ExoMars 2016. Cependant, le parachute, bien que plus grand que celui d'ExoMars 2016, car les charges à poser sont plus lourdes, sera fabriqué par la même société.

Pour tester les parachutes d'ExoMars 2016 et 2018, l'Agence spatiale européenne a fait appel à Arca, une société roumaine. Un contrat a été signé entre les deux parties pour la réalisation de tests de déploiement et de fonctionnement au moyen de ballons des futurs parachutes d'ExoMars.

Pour préparer les vols d'essai du DTV, Arca et l'Esa ont testé le matériel et les instruments qui seront utilisés. Des ballons ont ainsi amené à 24,4 km d'altitude deux conteneurs pressurisés qui ont été largués pour s'assurer du bon fonctionnement des composants. © Arca

Simulation des conditions d’atmosphère martienne

L'idée est d'utiliser deux véhicules d'essai de chute (DTV), sortes de fusées avec des ailettes d'un poids de plus d'une demi-tonne chacun. Amenés jusqu'à une altitude de 30 km, ils seront alors détachés pour entamer une chute libre de plusieurs minutes, au-dessus de la mer Noire, où ils seront récupérés. Il est prévu que ces simulateurs de masse atteignent la vitesse de Mach 0,7. Compte tenu de la différence de densité entre les atmosphères de la Terre et de Mars, cette expérience mettra les engins dans les conditions d'une rentrée atmosphérique martienne. Dès cette vitesse atteinte, le DTV déploiera son parachute.

Avant d'effectuer ces essais, Arca et l'Esa ont réalisé fin septembre un test afin de s'assurer que tout le matériel qui sera utilisé pour ces essais fonctionnera bien. L'avionique, les systèmes de communication et de mesure ont ainsi été essayés lors d'une chute libre de plus de 24 km d'altitude. Abrités à l'intérieur d'un conteneur pressurisé et capables de flotter, ils ont été récupérés à la surface de la mer Noire.

Abonnez-vous à la lettre d'information La quotidienne : nos dernières actualités du jour.

!

Merci pour votre inscription.
Heureux de vous compter parmi nos lecteurs !

Cela vous intéressera aussi