Le 14 juillet 2015, la sonde New Horizons, de la Nasa, survolait durant 24 heures la planète Pluton et ses cinq satellites, effectuant une série de mesures qui ont bouleversé nos connaissances de ce corps lointain. Retrouvez les plus belles images de cette rencontre, tandis que la sonde poursuit son chemin dans la ceinture de Kuiper.
Le cœur de Pluton ou la région Tombaugh Le « cœur de Pluton » est une région glacée en forme de cœur et d'environ 2.000 km de large. Elle a été baptisée « région Tombaugh », du nom de Clyde Tombaugh, découvreur de Pluton en 1930 (et décédé en 1997). Le lobe ouest (à gauche de l'image) est formé de glace de monoxyde de carbone (CO) et comprend la plaine Spoutnik. © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
La plaine Spoutnik, une des plus jeunes du Système solaire La plaine Spoutnik (du nom du premier satellite artificiel de la Terre, Spoutnik 1, lancé en 1957 par l'URSS), dépourvue de cratères, est une des plus jeunes du Système solaire : elle ne peut avoir plus de cent millions d'années. Des structures de 20 km environ sont entourées par des sortes de sillons, comportant par endroits de la matière sombre. On ne sait pas comment elles ont été formées. Peut-être par sublimation de glace, comme un sol de boue se craquelle après l'évaporation de l'eau. L'image a été acquise le 14 juillet par le télescope Lorri à 77.000 km de distance. © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Le vent de Pluton Sur la plaine Spoutnik, le télescope Lorri a repéré des formes noires sur la glace blanche, flanquées de sortes d'ombres allongées. Il s'agirait en fait de poussières emportées par le vent de l'atmosphère ténue de Pluton (un millionième de la pression terrestre). De ces taches (wind streaks sur l'image), on peut déduire la possible direction du vent (Inferred wind direction). La barre d'échelle représente 20 miles, soit 32 km. © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Les deux lobes du cœur de Pluton Les deux lobes de la plaine Spoutnik vus à 450.000 km. La partie ouest (à gauche) est recouverte par une couche de glace plus épaisse qu'à l'est. Il est vraisemblable que le lobe ouest soit une sorte de réservoir et que la glace se déplace vers l'est (par l'action du vent, peut-être). Résolution : 2,2 km/pixel. © Nasa/JHUAPL/SwRI
Des glaces en mouvement Au nord de la plaine Spoutnik, la glace d'azote (Nitrogen ice flow) glisse vers la région rocailleuse et cratérisée (Rugged cratered terrain). En amont, la couverture de glace est craquelée, formant des structures polygonales (Polygonal cells). La barre d'échelle indique 32 km. © Nasa/JHUAPL/SwRI
Les montagnes de glace de Pluton À 77.000 km de distance, le télescope Lorri a observé d'étonnantes montagnes d'environ 3.500 m de hauteur. Elles sont faites... d'eau glacée. Les glaces d'azote et de méthane, communes sur Pluton, sont trop fragiles pour former de telles structures. Les planétologues s'interrogent sur la source d'énergie qui peut maintenir une telle activité géologique. © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Les montagnes de la plaine Spoutnik Au sud de la plaine glacée Spoutnik, avec ses structures polygonales (Polygons), et au nord de la région Cthulhu, se dressent de hautes montagnes, nommées en l'honneur des deux vainqueurs de l'Everest : les monts Norgay et les monts Hillary. La couche de glace y est plus fine (thin ice sheet) et emplit un cratère (infilled crater). La barre d'échelle indique 64 km. © Nasa/JHUAPL/SwRI
De curieuses montagnes au bord d'une plaine de glace Des montagnes de glaces vues par Lorri à 77.000 km de distance, en bordure ouest de la plaine Spoutnik, de formes très variées et d'une hauteur de 1 à 1,5 km. Sans doute sont-elles faites de glace d'eau, tandis que la neige blanche est de la glace de monoxyde de carbone. Les surfaces sombres sont peut-être des dépôts de tholines. © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Le ciel bleu de Pluton L'atmosphère de Pluton vue en contre-jour par la caméra multispectrale MVIC de l'instrument Ralph. Les couleurs ont été reconstituées pour donner à peu près ce qu'aurait vu un œil humain. La couleur bleue viendrait de poussières faites de tholines, molécules très réactives contenant du carbone et de l'azote. © Nasa/JHUAPL/SwRI
La drôle d'atmosphère de Pluton Le vent solaire (Solar wind) heurte l'atmosphère de Pluton, qui s'étend loin du sol, produisant une onde de choc (Shock). Ce vent solaire est ralenti et dévié (Slowed and deflected solar wind). Derrière, une partie de l'atmosphère, essentiellement faite d'azote, s'échappe dans l'espace (Pluto's escaping nitrogen atmosphere). Ce schéma a été réalisé grâce aux données recueillies par l'instrument Swap (Solar Wind Around Pluto). © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Le Soleil révèle l'atmosphère de Pluton L'atmosphère de Pluton paraît structurée en deux couches, visualisées ici par la coloration (fausse) : la première au-dessus de la surface (en rouge-orange) jusqu'à 50 km et la seconde à 83 km (en vert), avec une zone de transition entre les deux. © Nasa/JHUAPL/SwRI
Le pôle noir du satellite Charon Vu le 13 juillet 2015 à 466.000 km, le satellite Charon (1.207 km de diamètre) montre un visage diversifié... et jeune. Sur cette image (compressée), on voit en effet peu de cratères. Des reliefs importants apparaissent, comme cet immense canyon d'environ un millier de kilomètres, visible en haut à droite de l'image, et profond, sans doute, de 7 à 9 km. Au pôle nord, une région sombre, aux bords flous (provisoirement baptisée Mordor par l'équipe de New Horizons, du nom d'une région fictive décrite dans le Seigneur des anneaux), est probablement un dépôt de matière carbonée. © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Le couple Pluton-Charon Deux images montrant Charon (à gauche) et Pluton (à droite) observés le 11 juillet à 4 millions de kilomètres. La sonde New Horizons ayant survolé, le 14 juillet, la partie claire de Pluton, ici à gauche sur la planète, cette face ne sera jamais vue en meilleure résolution. De même pour Charon. © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Pluton et Charon en – fausses – couleurs Des couleurs artificielles ajoutées en fonction des informations de spectrométrie montrent les compositions des surfaces de Pluton (à gauche) et de Charon (à droite) sur deux images du 13 juillet (la distance entre les deux est en réalité bien plus grande). Le cœur de Pluton apparaît en deux lobes de teintes différentes. Sur Charon, la région sombre apparaît ici rougeâtre. © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Charon n'a pas d'atmosphère Quand New Horizons est passée dans l'ombre de Charon, l'instrument Alice a analysé l'occultation de la lumière solaire. La chute et la réapparition de cette lumière (courbe rouge) sont brutales. Première conclusion : Charon n'a pas d'atmosphère détectable. © Nasa/JHUAPL/SwRI
Hydre, le plus grand des petits satellites de Pluton Hydre (Hydra en anglais), repéré par le télescope spatial Hubble en 2005, n'est pas sphérique. Cette image prise par l'instrument Lorri de New Horizons à 640.000 km a permis de préciser ses dimensions : 43 x 33 km. Un pixel de l'image représente 6 km. © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Nix, troisième satellite de Pluton Le télescope Lorri, à 590.000 km de distance, a pris le 13 juillet cette image de Nix, le troisième satellite de Pluton en taille, après Charon (1.200 km de diamètre) et Hydre (43 x 33 km), découvert en 2005 par le télescope spatial Hubble. Chaque pixel représente 6 km. © Nasa/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Les images de Pluton avant New Horizons... Des images du passé. À gauche, une cartographie réalisée en 2000 à partir de nombreuses données, dont celles de Hubble et celles venues des occultations de Pluton par Charon dans les années 1980. À droite, la meilleure représentation existant avant le survol, une cartographie réalisée grâce à l'instrument ACS installé par des astronautes sur Hubble 2002. La petite image en haut et au milieu est la photographie brute que Hubble donne de Pluton. New Horizons a complètement changé notre image de Pluton et de son monde ! © Nasa / Eliot Young, Richard Binzel, Keenan Crane, 2000 / SwRi / Montage Futura-Sciences
Pluton et le méthane gazeux En 2008, soit avant le passage de la sonde New Horizons en 2015, le spectre de Pluton avait été réalisé grâce au VLT (Very Large Telescope). Il a révélé 17 raies individuelles du méthane gazeux, permettant d'évaluer son abondance (de 0,5 % par rapport à l'azote) et sa température, environ 90 K. Cette vue d'artiste représente l'atmosphère de Pluton. À gauche se trouve Charon, principal satellite de la planète naine. © L. Calçada, ESO
Vue de la surface de Pluton avant New Horizons Les deux grandes images principales donnent un premier aperçu de la surface de Pluton. Elles ont été obtenues après traitement informatique des deux petites images du haut, réalisées en 1996 par le télescope Hubble. © Alan Stern (Southwest Research Institute), Marc Buie (Lowell Observatory), Nasa, ESA
[EN VIDÉO] New Horizons survole la surface gelée de Pluton Lors de son survol de Pluton, la sonde New Horizons a capturé des images très détaillées de sa surface. Elles ont permis ce montage vidéo, où l'on découvre pour la première fois la région de Tombaugh, les montagnes de Norgay ainsi que la plaine glacée Spoutnik.
Article publié le 14 juillet 2015
Ce monde glacé, découvert en 1930 par l'Américain Clyde Tombaugh, est longtemps resté méconnu, trop loin (entre 29 et 49 fois la distance Terre-Soleil), et trop petit, donc très peu lumineux. Son compagnon Charon n'a été découvert qu'en 1978 et le télescope spatial Hubble a repéré entre 2005 et 2012 quatre petits satellites, lors d'observations prévues, justement, pour préparer l'arrivée de la sonde New Horizons, lancée en 2006.
Parvenue près de cette planète naine en juillet 2015, bien trop rapidement pour se mettre en orbite, la toute petite sonde de la Nasa (478 kg, contre 2,9 tonnes pour Rosetta) a déclenché une série ininterrompue durant 24 heures de mesures et de photographies, de Pluton, de Charon et des petits satellites, Hydre, Nix, Styx et Kerbéros.
Pluton est un monde dynamique
Ces données ont commencé à être transmises vers la Terre tout de suite après le survol mais la distance est telle que le débit est extrêmement faible. Le réseau DSP (Deep Space Network) n'a pas encore terminé le téléchargement des fichiers. La fin de la transmission est prévue pour octobre prochain...
C'est peu de dire que New Horizons a changé notre vision de Pluton. Les astronomes la savaient contrastée et s'intéressaient à une partie plus claire. Les ingénieurs du JPL ont fait en sorte que la sonde survole cette région au moment où elle était au plus près de la planète. Et voilà comment fut connu sur Terre le « cœur » de Pluton, la plaine de glace Spoutnik.
L'équipe d'Alan Stern a ensuite égréné les images et les analyses de son étonnante atmosphère, ténue mais étendue, de ses glaces si peu cratérisées (voire pas du tout) qu'elles sont nécessairement jeunes. Des écoulements récents de glaciers, des sources de chaleurs internes, des reliefs insoupçonnés ont été révélés. Au lieu d'un monde figé par le froid, c'est une planète naine, certes, mais dynamique et complexe qu'a révélée New Horizons.
Cet ensemble de corps faisant partie de la ceinture de Kuiper, riche de milliers de corps considérés comme primitifs, c'est aussi une partie de l'histoire de notre Système solaire dont New Horizons a commencé à nous faire la lecture. Elle file aujourd'hui vers un petit corps, plus lointain, sa seconde cible qu'elle atteindra en 2019.