Une étoile à neutrons est un astre très dense résultant de l'effondrement gravitationnel d'une grosse étoile explosant en supernova SN II. Lorsqu'elles sont en couple, les étoiles à neutrons peuvent finir par entrer en collision et fusionner, engendrant une bouffée d'ondes gravitationnelles et une puissante émission d'ondes électromagnétiques dans toutes les longueurs d'onde, dont le visible ; cette émission est détectable sous forme de sursauts gamma. © Dana Berry, SkyWorks Digital
Sciences

Alma révèle pour la première fois le rayonnement millimétrique des kilonovae

ActualitéClassé sous :Univers , Etoile à Neutrons , GRB 211106A

Les sursauts gamma de courte durée ne durent qu'une fraction de seconde, ce qui les rend difficiles à détecter, et ils semblent se produire surtout au début de l'histoire du cosmos observable. Il est admis aujourd'hui qu'il s'agit de collisions d'étoiles à neutrons produisant ce que l'on appelle des kilonovae. Des mystères subsistent à leur sujet mais on sait maintenant que le réseau de radiotélescopes Alma peut aider à les résoudre en les observant pour la première fois dans son domaine de longueurs d'onde.

Cela vous intéressera aussi

[EN VIDÉO] Sursauts gamma : des collisions d'étoiles à neutrons illuminent l'Univers  Les sursauts gamma sont les évènements les plus lumineux de l'Univers dans le domaine des ondes électromagnétiques. On peut en observer un par jour en moyenne sur la voûte céleste et ils surviennent dans des galaxies lointaines. Il en existe deux types, les courts et les longs. Cette vidéo explique la nature des sursauts courts. 

Bien des progrès en astronomie ont résulté de l'ouverture d'une nouvelle fenêtre d'observation dans une nouvelle bande du spectre électromagnétique. Les rayons X ont révélé les trous noirs stellaires, les rayons infrarouges l'intérieur des nurseries d'étoiles et les ondes radio décimétriques la structure en bras de la Voie lactée.

C'est l'une des raisons de la conception de l'Atacama Large Millimeter/submillimeter Array (Alma). Une autre, complémentaire, c'est que le réseau de radiotélescopes ainsi construit permet de faire de la synthèse d'ouverture et donc de disposer d'un instrument virtuel de très grande taille sans avoir à le créer.

Aujourd'hui, on apprend que le réseau de radiotélescopes Alma a été utilisé pour une grande première, observer dans le domaine radio millimétrique et submillimétrique les processus astrophysiques associés aux kilonovae. Rappelons qu'il s'agit de collisions d'étoiles à neutrons que l'on a découvert la première fois sous la forme de sursauts gamma courts et dont on a récemment seulement pu déterminer la nature, bien que l'on s'en soit douté pendant des décennies. L'énergie libérée est colossale, ce qui fait des sursauts gamma parmi les phénomènes les plus lumineux du cosmos.

Dans cette vidéo d’artiste, figurent deux étoiles à neutrons de faible dimension, mais de densité très élevée sur le point de fusionner et d’exploser en kilonova. Cet événement particulièrement rare se traduit par l’émission d’ondes gravitationnelles et de sursauts gamma courts. Les deux émissions ont été effectivement observées le 17 août 2017, respectivement par Ligo-Virgo et Fermi/Integral. Diverses observations détaillées menées au moyen des télescopes de l’ESO ont confirmé la nature de cet objet – une kilonova – situé au sein de la galaxie NGC 4993 à quelque 130 millions d’années-lumière de la Terre. Ce type d’objet constitue la principale source d’éléments chimiques lourds, tels l’or et le platine, dans l’Univers. © ESO

La clé de cette détermination a été l'essor de l'astronomie multimessager avec la détection simultanée par Ligo et Virgo d'ondes gravitationnelles provenant de la source GW170817, clairement associées sur la voûte céleste à des émissions d'ondes électromagnétiques aussi bien dans le domaine X que gamma (GRB 170817A) - observées par les satellites Chandra et Fermi -, que dans le domaine visible avec le Las Cumbres Observatory pour ne citer que ces instruments.

Des collisions d'étoiles à neutrons qui produisent l'or et le platine

Cette fois-ci, les astrophysiciens ont publié un article dans The Astrophysical Journal Letters, dont une version est en accès libre sur arXiv, qui parle du sursaut gamma court GRB 211106A observé - comme son nom de Gamma Ray Burst l'indique, le 6 novembre 2021. Comme dans le cas de la source d'ondes gravitationnelles (Gravitational Wave) observée le 17 août 2017, la collision entre les étoiles à neutrons provient du fait que les deux astres compacts ont perdu de plus en plus rapidement de l'énergie sous forme d'ondes gravitationnelles, ce qui les a conduits à tomber inexorablement et de plus en plus vite l'un vers l'autre.

La fusion a non seulement dû produire des réactions thermonucléaires à l’origine de la naissance d’éléments lourds comme l’or et le platine, mais aussi un faisceau de particules collimaté à très hautes vitesses produisant également un faisceau tout aussi collimaté de photons gamma à hautes énergies. La Terre est passée par chance dans ce faisceau à la façon d'un observateur éclairé par un phare.

En injectant des torrents d'énergie dans le milieu interstellaire autour de lui, le sursaut gamma de courte durée GRB 21106A a produit une source lumineuse rémanente dont cette image a été capturée plus d'une semaine après l'occurrence du sursaut avec Alma. La lumière millimétrique, vue ici, indique l'emplacement de l'événement dans une galaxie hôte distante dans des images capturées à l'aide du télescope spatial Hubble. L'évolution de la luminosité de la lumière millimétrique renseigne sur l'énergie et la géométrie des jets produits lors de l'explosion. © Alma (ESO/NAOJ/NRAO), T. Laskar (Utah), S. Dagnello (NRAO/AUI/NSF)

Le jet de particules et de photons gamma en s'injectant dans le milieu interstellaire l'excite et force la matière qu'il contient, à briller en réponse. C'est ce rayonnement rémanent qui a été détecté pour la première fois dans la bande spectrale accessible à Alma. Avant cet instrument, les télescopes millimétriques n'étaient pas assez sensibles pour détecter ces rémanences, car les GRB sont souvent observés à des milliards d'années-lumière de la Voie lactée. On n'observe donc que les GRB anciens et on soupçonne en plus que pour une raison encore inconnue, ils étaient plus abondants pendant les premiers milliards d'années de l'histoire du cosmos. De fait, GRB 211106A est survenu alors que l'Univers observable n'avait que 40 % de son âge actuel. Or, même si les kilonovae sont bien visibles de loin en gamma, ce n'est plus le cas avec le rayonnement rémanent qui est nettement moins lumineux.

Au départ, lorsque seule la contrepartie aux rayons X de GRB 211106A avait été découverte à l'aide du satellite Swift, les astrophysiciens pensaient que la kilonovae pourrait tout de même provenir d'une galaxie voisine, bien qu'on n'arrivait pas à lui en associer une via des observations dans le visible avec Hubble - sans doute en raison de la présence sur la ligne de visée aux abords du GRB d'une quantité importante de poussières.

Mais finalement, grâce à Alma, il a été possible de trouver une galaxie peu lumineuse et lointaine où s'est produit le sursaut gamma. La distance déterminée, il fallut en conclure qu'il s'agissait de l'un des plus puissants GRB détectés à ce jour...

Alma, conjointement avec des observations du JWST (James Webb Space Telescope) devrait permettre d'aller encore plus loin dans l'étude des sursauts gamma courts.

La saga de la détection de GW170817. Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © Science vs Cinema

Abonnez-vous à la lettre d'information La quotidienne : nos dernières actualités du jour. Toutes nos lettres d’information

!

Merci pour votre inscription.
Heureux de vous compter parmi nos lecteurs !