Mots-clés |
  • Univers

Jupiter

PDF

Cinquième planète du système solaire, Jupiter a une composition proche de celle du Soleil, mais sa masse n´a pas été suffisante pour déclencher des réactions nucléaires et former une étoile. Son atmosphère d´hydrogène combiné à d´autres éléments peu abondants, donne des nuages de couleur vive agités d´ouragans violents provoqués par un dégagement de chaleur intense.

À la différence des planètes telluriques et à l'instar des trois autres planètes géantes, Jupiter ne possède pas de surface solide : il s'agit d'une boule de gaz - essentiellement de l'hydrogène et de l'hélium - qui entoure un noyau probablement composé de fer et de silicates, auxquels s'ajoutent probablement des « glaces d'eau », d'ammoniac et de méthane.

Jupiter possède un champ magnétique, une magnétosphère et une ionosphère, et est caractérisé par d'intenses émissions radioélectriques. Comme sur la Terre, les aurores polaires se développent dans les zones de latitudes élevées.

1. Structure de la planète

Jupiter, comme d'ailleurs les autres planètes géantes du système solaire, est un objet profondément différent des planètes telluriques : Mercure, Vénus, la Terre et Mars sont caractérisés par une surface solide de quelques milliers de kilomètres de diamètre, qu'entoure une atmosphère peu épaisse, voire très ténue dans le cas de Mercure. Au contraire, Jupiter est une énorme boule de gaz, composée essentiellement, comme le Soleil et les autres étoiles, d'hydrogène et d'hélium. Les images fastueuses que nous observons au télescope ou qui ont été transmises par les sondes spatiales sont celles des couches extérieures des nuages. Ces nuages dissimulent la structure profonde de la planète, mais les techniques modernes de mesures des rayonnements électromagnétiques réfléchis ou émis par la planète, le repérage précis des trajectoires des sondes spatiales passant à sa proximité et l'application des lois de la physique permettent de se faire une idée étonnamment précise de l'intérieur de la planète.

L'analyse du rayonnement planétaire dans l'ultraviolet, le visible, l'infrarouge et le domaine radioélectrique, tant à partir des observatoires terrestres qu'à l'aide des appareils embarqués à bord des sondes spatiales, a permis de déterminer la température et la composition chimique des couches extérieures de Jupiter sur une épaisseur d'environ 2 000 kilomètres, ce qui est évidemment minime comparé aux quelque 70 000 kilomètres du rayon de Jupiter. Que verrait donc un observateur descendant dans Jupiter, armé des moyens d'investigation nécessaires... et indestructible ?

Venant de l'espace interplanétaire et se dirigeant vers le centre de la planète, notre voyageur rencontre d'abord une haute atmosphère extrêmement ténue, constituée essentiellement d'hydrogène, et où la température est de l'ordre de 1 500 kelvins. Il aborde ensuite, à des niveaux où la pression est de l'ordre de 1 millionième de la pression de l'atmosphère terrestre au sol, une zone au-dessous de laquelle la turbulence est assez forte pour que les divers composants atmosphériques se mélangent à tout moment. La température à cet endroit n'est plus que d'environ 37° kelvins ; elle continue à décroître à mesure que l'on descend. À partir de ce moment, l'atmosphère est composée d'environ 90 % d'hydrogène moléculaire (H2) et de près de 10 % d'hélium. S'y ajoutent une petite quantité de méthane (CH4) - de l'ordre de 0,1 % - et des quantités encore plus faibles d'acétylène (C2H2) et d'éthane (C2H6) ; ces deux derniers gaz sont produits dans la haute atmosphère par le rayonnement ultraviolet solaire, qui casse les molécules de méthane en morceaux qui se recombinent ultérieurement en molécules plus compliquées, les hydrocarbures. L'acétylène et l'éthane sont les seuls hydrocarbures qui ont été détectés de manière sûre, mais il est probable que d'autres existent en quantités très faibles. D'après des analyses des données des sondes, l'éthylène (C2H4), le benzène (C6H6) et le méthylacétylène (C3H4) seraient aussi présents.

Descendant encore, le voyageur détecte, à des niveaux où la pression est de l'ordre de quelques millièmes d'atmosphère, de l'ammoniac (NH3) en quantité infime mais néanmoins suffisante pour pouvoir être détectée à partir de satellites d'observation astronomique circumterrestres. Il commence aussi à découvrir une brume peu épaisse composée de petites particules de diamètre inférieur au micromètre et dont la nature est encore inconnue (il pourrait s'agir de petits cristaux d'ammoniac ou bien de particules d'hydrocarbures à l'état solide ou liquide). Arrivé à un niveau voisin d'un dixième d'atmosphère, le voyageur se trouve alors à des températures de l'ordre de 12° kelvins, dans une région appelée tropopause, à partir de laquelle la température va recommencer à croître continûment jusqu'au centre de la planète. À ce niveau, la quantité d'ammoniac croît extrêmement rapidement, jusqu'à atteindre quelques dix-millièmes vers 0,6 atmosphère.

Apparaît également un gaz appelé phosphine (PH3) qui, bien qu'en quantité modeste (moins de 1 millionième), absorbe énormément le rayonnement infrarouge, comme d'ailleurs l'ammoniac. Vers 0,3 - 0,5 atmosphère de pression, le voyageur découvre une couche de nuages blancs comme les cirrus dans l'atmosphère terrestre, composés de cristaux d'ammoniac dont les dimensions pourraient atteindre 100 micromètres. Cette couche nuageuse est peu opaque dans le domaine visible, de sorte qu'elle n'empêche pas de voir à partir de la Terre les nuages colorés situés plus profondément, vraisemblablement vers 2 ou 3 atmosphères de pression. En revanche, les « cirrus » d'ammoniac absorbent fortement le rayonnement infrarouge, bloquant ainsi le rayonnement des couches plus chaudes situées à plus grande profondeur. La couche d'ammoniac n'est cependant pas homogène et, à divers endroits de Jupiter, notamment dans la zone équatoriale, elle est peu dense, ou inexistante, permettant ainsi au rayonnement infrarouge à 5 micromètres de nous parvenir. Les nuages colorés sont en revanche opaques à l'infrarouge comme au visible. Leur nature est encore inconnue : s'agit-il de sulfure d'acide (NH4SH), de composés phosphorés, voire de composés organiques complexes ? La réponse à cette question doit attendre l'analyse des résultats obtenus lors de la descente d'une sonde dans l'atmosphère de Jupiter (mission Galileo).

Vers 3 ou 4 atmosphères, le voyageur commence à détecter d'autres composants atmosphériques, comme la vapeur d'eau, le germane (GeH4), l'oxyde de carbone (CO). D'autres composants mineurs, non encore détectés, sont sans doute présents en très petites quantités. À partir de 4 ou 5 atmosphères, vers 27° kelvins, les rayonnements visible ou infrarouge ne peuvent plus fournir d'information, mais le rayonnement radioélectrique émis par ces couches peut encore être détecté du sol à l'aide de grands radiotélescopes. Au-delà d'environ 40 atmosphères de pression, vers 32° kelvins, nous ne disposons plus d'information directe. On entre dans le domaine de la structure interne, qui fait l'objet de théories complexes dont il convient de dire quelques mots avant de pénétrer plus profondément dans le mystère jovien.

Trois sortes d'information fournissent des contraintes pour les théories sur la structure interne de Jupiter. Il s'agit en premier lieu des proportions respectives des deux constituants majeurs de Jupiter, l'hydrogène et l'hélium ; ces proportions ont été mesurées avec précision par les sondes Voyager dans l'atmosphère extérieure. En deuxième lieu, les mesures dans l'infrarouge ont montré que Jupiter émettait 1,7 fois plus d'énergie qu'il n'en recevait du Soleil ; en d'autres termes, il existe au centre de Jupiter une source d'énergie qui produit une quantité d'énergie de l'ordre de 70 % de celle que la planète reçoit du Soleil ; la présence de cette source interne impose la valeur de la température centrale. Enfin, comme tout corps massif, la planète rayonne autour d'elle un champ gravitationnel ; ce champ n'est pas symétrique et ses variations perturbent les trajectoires des sondes spatiales ; les écarts à la symétrie du champ gravitationnel ainsi déduits donnent des informations sur la répartition des masses à l'intérieur de la planète.

Revenons donc à notre voyageur imaginaire. S'enfonçant au-dessous des nuages visibles de Jupiter, il trouve sans doute des nuages plus complexes. Par ailleurs, la température croissant de plus en plus, il commence à trouver - toujours en très petite quantité par rapport à l'hydrogène et l'hélium, qui demeurent uniformément mélangés - divers composés qui deviennent volatils (composés du carbone, de l'azote, du silicium, du magnésium, du soufre, etc.). Par ailleurs, la pression devient de plus en plus forte, atteignant des valeurs situées bien au-delà de celles qui sont réalisables sur Terre en laboratoire. Néanmoins, les composants demeurent fluides et non solides à cause des températures relativement élevées. Vers 2 millions d'atmosphères et 10 000 kelvins, un changement radical apparaît cependant : l'hydrogène devient monoatomique et métallique, c'est-à-dire que sa densité et sa conductivité deviennent tout à coup beaucoup plus importantes. Par conséquent, la densité locale croît brutalement. On croit que, contrairement à ce qui se passe dans Saturne, l'hélium reste mélangé à l'hydrogène métallique par suite des hautes températures existant dans cette région de Jupiter. Pour les mêmes raisons, l'hydrogène métallique se trouve sous forme liquide et non solide.

Continuant sa descente, le voyageur atteint le niveau fantastique de 45 millions d'atmosphères et de 20 000 kelvins à une distance d'environ 57 000 kilomètres au-dessous des nuages visibles de Jupiter. On pense que c'est à cet endroit que devrait se situer la limite supérieure du noyau solide de la planète, constitué à l'origine par accrétion des grains et des poussières immergés dans la nébuleuse primitive. Ce noyau serait composé de silicates, de métaux et peut-être de glaces (d'eau, d'ammoniac, voire de méthane). Au moment de l'accrétion, ce noyau s'est considérablement échauffé. C'est le reliquat de cette chaleur primordiale qui serait à l'origine de la source d'énergie interne de Jupiter que l'on observe.

L'étude de la composition de Jupiter est importante à plus d'un titre. En effet, les molécules gazeuses des atmosphères planétaires tendent à s'en échapper par suite de leur agitation propre - le mouvement brownien -, et cela d'autant plus que la température atmosphérique est plus élevée ; en revanche, l'attraction gravitationnelle de la planète tend à s'opposer à cette évasion. Dans le cas de Jupiter, la gravité est forte (environ trois fois celle de la Terre) et la température des couches externes est beaucoup plus faible que dans les planètes telluriques, de sorte que même les molécules les plus légères ne peuvent s'échapper de l'atmosphère. Il s'ensuit que la composition de l'atmosphère de Jupiter doit être encore maintenant la même qu'au moment de la formation de la planète, il y a 4,5 milliards d'années environ. En d'autres termes, on peut, en déterminant la composition actuelle de Jupiter, avoir accès à celle de la nébuleuse primitive dont est issu, pense-t-on, le système solaire tout entier. On peut connaître ainsi la composition du milieu interstellaire à cet endroit de notre Galaxie, et il y a 4,5 milliards d'années.

Parmi les éléments qui composent le milieu interstellaire, deux d'entre eux, mesurables dans Jupiter, présentent un intérêt particulier du point de vue de la cosmologie : il s'agit de l'hélium et du deutérium. En effet, la théorie du big bang prédit que ces deux gaz ont été fabriqués pour l'essentiel durant les trois premières minutes de l'existence de notre Univers. Ultérieurement, de l'hélium est en outre produit à l'intérieur des étoiles au cours de leur évolution. Certaines de ces étoiles terminent cette évolution en explosant : ce sont les supernovae. Ce faisant, elles enrichissent le milieu interstellaire en matériaux qu'elles avaient fabriqués, et notamment en hélium. La proportion d'hélium dans le milieu interstellaire croît donc constamment avec le temps. La mesure de l'abondance de l'hélium dans Jupiter fournit donc une valeur supérieure de l'abondance de l'hélium primordial. Cette valeur supérieure, déterminée par la mission Voyager, est de l'ordre de 24 % en masse, ce qui est en bon accord avec les limites supérieures déduites de l'observation de très vieilles galaxies.

Plus importante encore est la mesure du deutérium dans Jupiter. Cet élément, lui aussi formé essentiellement lors du big bang, est détruit dans les étoiles. Les explosions de supernovae enrichissent donc le milieu interstellaire en tous les éléments, sauf en deutérium. Il s'ensuit que la proportion relative du deutérium - par exemple par rapport à l'hydrogène - décroît continuellement avec le temps. Or, pour le moment, le deutérium interstellaire ne peut être mesuré que dans notre Galaxie, c'est-à-dire qu'on ne peut avoir en fait accès qu'à la valeur de la quantité de deutérium à l'époque actuelle. La mesure dans Jupiter est donc très précieuse, puisqu'elle fournit un second point, situé il y a 4,5 milliards d'années, sur la courbe d'évolution et une valeur inférieure de l'abondance primordiale.

Les mesures d'abondance du deutérium obtenues par la mission Voyager semblent confirmer que le rapport deutérium/hydrogène a décru légèrement depuis la naissance du système solaire, conformément à l'allure du modèle d'évolution de l'abondance du deutérium en fonction du temps.

En utilisant un tel modèle, on peut également remonter à l'abondance du deutérium tel qu'il fut produit lors du big bang. Le modèle théorique de cette explosion primordiale nous permet alors de déduire la densité des protons et des neutrons (ce que l'on appelle les nucléons ou les baryons) de l'Univers. De cette valeur de la densité, les modèles cosmologiques tirent des conséquences fondamentales sur la structure de l'Univers, qui serait ouvert, c'est-à-dire qu'il poursuivrait à jamais son expansion. Ce résultat serait cependant remis en question si les expériences en cours dans les grands accélérateurs de particules permettaient de prouver - comme certaines expériences déjà réalisées le suggèrent - que la particule élémentaire appelée neutrino a une masse. Comme les neutrinos sont beaucoup plus abondants que les protons et les neutrons, la densité totale de l'Univers serait beaucoup plus grande. L'Univers pourrait être alors fermé, c'est-à-dire qu'après avoir poursuivi son expansion actuelle pendant encore un certain temps il se contracterait de nouveau, jusqu'à revenir à sa dimension initiale.

Deux scénarios de formation de Jupiter sont pour le moment envisagés. Dans le premier scénario, on suppose que, dans la région de Jupiter et des autres planètes géantes, des fragments assez importants (de l'ordre de plusieurs milliers de fois le rayon actuel de Jupiter) de la nébuleuse primitive se sont condensés et ont formé des protoplanètes gazeuses géantes. Ultérieurement, un noyau se serait formé à partir de grains de fer et de silicates se trouvant déjà dans la nébuleuse et tombant vers le centre de la protoplanète. Dans ce scénario, la composition atmosphérique des planètes géantes devrait être similaire à celle du Soleil, si l'on admet que la nébuleuse primitive avait la même composition en son centre et à sa périphérie. En particulier, le carbone, l'azote et l'oxygène - qui sont les composants les plus abondants dans l'Univers après l'hydrogène et l'hélium - devraient être dans les mêmes proportions par rapport à l'hydrogène dans l'atmosphère de Jupiter et dans le Soleil. Ce n'est pas ce qu'on observe ; le rapport carbone/hydrogène dans toutes les planètes géantes et, semble-t-il, le rapport azote/hydrogène dans Jupiter et Saturne sont plus élevés que dans le Soleil.

Un autre scénario considère que les planètes géantes se sont formées en deux temps. Dans une première phase, un noyau s'est formé par concentration de grains flottant dans la nébuleuse primitive. Ces grains étaient composés de fer et de silicates, mais aussi, à cause des basses températures existant dans la nébuleuse à sa périphérie, de glaces d'eau, d'ammoniac et de méthane. Le noyau crût jusqu'à atteindre une certaine masse critique, de l'ordre de dix fois la masse de la Terre. La chaleur dégagée durant ce processus pourrait avoir partiellement revaporisé les glaces. Lorsque le noyau atteignit la masse critique, il attira les matériaux environnants de la nébuleuse primitive constitués essentiellement d'hydrogène et d'hélium qui n'ont pu se condenser parce que cela exigerait des températures extrêmement basses. Ainsi se seraient constituées, dans cette deuxième phase, les atmosphères de Jupiter et des autres planètes géantes, dans lesquelles le carbone, l'azote et l'oxygène pourraient, à la suite de la revaporisation des glaces dans l'atmosphère, être enrichis par rapport au Soleil.

Les Anneaux de Jupiter - Statistiques

Les anneaux de Jupiter ont été découverts le 4 mars 1979 par les caméras de la sonde Voyager-1 ; la densité de ces anneaux paraît environ un milliard de fois plus faible que celle des anneaux de Saturne, ce qui explique que, situés très près du disque brillant de la planète, ils n'aient jamais été observés auparavant depuis la Terre : leur détection est aussi difficile que le repérage à grande distance d'une faible bougie située à côté d'un puissant phare marin. Si l'on effectue des observations dans l'infrarouge à une longueur d'onde de 2,2 micromètres (le méthane, abondant dans l'atmosphère de Jupiter, est alors quasi opaque), le rapport luminosité des anneaux sur luminosité de la planète est fortement augmenté et les anneaux peuvent être détectés depuis la Terre, ce qui a été accompli cinq jours après leur découverte par Voyager-1. Cette découverte a permis d'expliquer pourquoi, lors de son survol de Jupiter cinq ans auparavant, Pioneer-11 avait observé à certaines distances de la planète des variations brusques dans le nombre de particules chargées en orbite autour de Jupiter ; certains scientifiques avaient alors émis l'hypothèse que Jupiter possédait des satellites non encore découverts ou des anneaux aux endroits où le nombre de particules de haute énergie décroissait ; cinq ans plus tard, cette hypothèse était vérifiée !

La découverte des anneaux de Jupiter, survenant deux ans après celle des anneaux d'Uranus, montrait que l'existence d'anneaux autour des planètes géantes était naturelle. Comme ceux de Saturne et d'Uranus, les anneaux de Jupiter possèdent des bords nets et des satellites proches ; cependant, ils sont beaucoup plus ténus et bien différents. Pour l'instant, on ne connaît évidemment ni la taille ni la nature des particules de cet anneau : situées à l'intérieur de la magnétosphère de Jupiter, elles sont probablement chargées. On peut distinguer quatre composantes : un anneau brillant d'environ 6 000 kilomètres de largeur est prolongé vers l'extérieur par un bord très brillant d'environ 800 kilomètres de largeur. Vers l'intérieur, du matériau plus dispersé s'étend jusqu'au sommet des nuages de Jupiter ; un halo très ténu enveloppe le tout.

Les satellites de Jupiter

Les premières lunes de Jupiter furent découvertes en 1610, lorsque Galileo Galilei observa les lunes galiléennes (Io, Europe, Ganymède et Callisto), les quatre grands satellites du système jovien. Il s'agissait de la première observation de lunes autre que celle de la Terre. Il est possible cependant qu'une observation antérieure ait été réalisée en 362 av. J.-C. par l'astronome chinois Gan De.

Au cours des quatre siècles suivants, avant l'ère spatiale, huit autres satellites furent découverts : Amalthée (1892), Himalia (1904), Élara (1905), Pasiphaé (1908), Sinopé (1914), Lysithéa et Carmé (1938), et Ananké (1951). Pendant les années 1970, deux autres satellites furent observés à partir de la Terre : Léda (1974) et Thémisto (1975), qui fut ensuite perdu puis retrouvé en 2000.

Avant l'arrivée de sondes spatiales dans l'environnement de Jupiter, 13 satellites étaient donc connus (14 en comptant Thémisto). Les missions Voyager, qui survolèrent le système jovien en 1979, permirent la découverte de trois nouvelles lunes : Métis et Thébé en mars 1979 sur des photographies de Voyager 1, Adrastée en juillet 1979 par Voyager 2.

Entre 1979 et 1999, aucun nouveau satellite de Jupiter ne fut découvert. Le 6 octobre 1999, le programme Spacewatch découvrit ce qui fut initialement considéré comme un nouvel astéroïde, 1999 UX18 mais qui fut rapidement identifié comme une nouvelle lune de Jupiter, Callirrhoé.

Un an plus tard, entre le 23 novembre et le 5 décembre 2000, l'équipe de Scott S. Sheppard et David C. Jewitt de l'Université d'Hawaii débuta une campagne systématique de dépistage des petites lunes irrégulières de Jupiter en utilisant deux des treize télescopes situés au sommet de Mauna Kea à Hawaii : le Subaru (8,3 m de diamètre) et le Canada-France-Hawaii (3,6 m).

47 satellites furent découverts entre 2000 et 2006, qui possèdent des orbites éloignées, excentriques, inclinées et rétrogrades; ils font en moyenne 3 kilomètres de diamètre, le plus grand atteignant à peine 9 km. On pense que ce sont tous des corps astéroïdaux ou cométaires capturés, possiblement fragmentés en plusieurs morceaux.

En 2006, on connaissait 63 lunes à Jupiter, le record du système solaire. Il est possible que d'autres lunes plus petites (moins d'un km de diamètre) restent à découvrir.

Les satellites galiléens de Jupiter, vue d'ensemble et surface.
Les satellites galiléens de Jupiter, vue d'ensemble et surface.

La planète Jupiter. La planète Jupiter.

Jupiter - 2 Photos


connexes

Vos réactions

Chargement des commentaires