Le chasseur de planètes Harps, à l'observatoire de La Silla de l'ESO au Chili, a permis la toute première détection directe de la lumière visible réfléchie par une exoplanète. Et pas la moindre puisqu'il s'agit de 51 Pegasi b, la première de toutes, découverte en 1995. Ces observations en ont révélé des propriétés encore inconnues et augurent des belles découvertes qu'effectueront la prochaine génération d'instruments tel Espresso sur le VLT, ainsi que les télescopes à venir comme l'E-ELT.
L'exoplanète 51 Pegasi b se situe à quelque 50 années-lumière de la Terre dans la constellation de Pégase. Elle fut découverte en 1995 et demeurera à jamais la toute première exoplanète détectée à proximité d'une étoile normale semblable au Soleil. Elle constitue également l'archétype des Jupiter chauds - un type de planètes relativement ordinaire, similaires à Jupiter en taille et en masse, bien qu'orbitant à plus faible distance de leurs étoiles hôtes.
Depuis cette découverte historique, l'existence de plus de 1.900 exoplanètes au sein de 1.200 systèmes planétaires a été confirmée. Mais l'année du vingtième anniversaire de sa découverte, l'observation de 51 Pegasi b permet une nouvelle avancée dans l'étude des exoplanètes.
L'équipe à l'origine de ces nouvelles observations était dirigée par Jorge Martins de l'Institut d'Astrophysique et des Sciences Spatiales (IA) de l'université de Porto au Portugal, actuellement doctorant à l'ESO au Chili. Elle a utilisé l'instrument Harps qui équipe le télescope de 3,60 mètres de l'ESO à l'observatoire de La Silla au Chili.
La lumière réfléchie par une exoplanète : ténue mais précieuse
La méthode la plus couramment utilisée de nos jours pour sonder l'atmosphère d'une exoplanète repose sur l'examen du spectre de l'étoile hôte qui traverse l'atmosphère de la planète au cours de son transit - cette technique se nomme spectroscopie de transmission. Une autre approche consiste à observer le système lorsque l'étoile passe devant la planète, et à en déduire la température de l'exoplanète.
Cette nouvelle technique ne dépend pas de la survenue d'un transit planétaire. Elle peut donc être appliquée à l'étude d'un plus grand nombre d'exoplanètes. En outre, elle permet la détection directe du spectre planétaire dans le domaine visible, et donc la caractérisation de nouvelles propriétés planétaires impossibles à acquérir au moyen des autres méthodes.
Le spectre de l'étoile hôte est utilisé comme modèle pour orienter la recherche d'une semblable signature de la lumière censée être réfléchie par la planète lorsqu'elle décrit son orbite. La lueur des planètes étant extrêmement faible comparée à l'éclat de leurs étoiles hôtes, cette tâche s'avère particulièrement délicate.
Par ailleurs, le signal en provenance de la planète se trouve aisément masqué par d'autres effets mineurs et diverses sources de bruit. La méthode appliquée aux données collectées par Harps sur 51 Pegasi b a permis de surmonter l'ensemble de ces difficultés, ce qui constitue une formidable preuve de la validité du concept.
Une méthode pour mesurer la masse d'une exoplanète
Jorge Martins résume ainsi la démarche adoptée : « Cette méthode de détection présente un grand intérêt scientifique parce qu'elle permet de mesurer la masse réelle de la planète ainsi que l'inclinaison de son orbite, deux paramètres essentiels à une meilleure compréhension du système. Elle conduit également à estimer l'albédo, ou indice de réflexion de la planète, dont nous pouvons déduire la composition de surface de la planète ainsi que celle de son atmosphère ».
Il est ainsi apparu que la masse de 51 Pegasi b avoisinait la moitié de celle de Jupiter, et que son orbite était inclinée de quelque 9 degrés en direction de la Terre. En outre, son diamètre semble être supérieur à celui de Jupiter, et sa surface extrêmement réfléchissante. Ces quelques propriétés sont typiques de celles d'un Jupiter chaud situé à très grande proximité de son étoile hôte et donc exposé à un ensoleillement intense.
L'utilisation de Harps s'est avérée cruciale pour cette étude. Et le fait que ce résultat ait été obtenu au moyen du télescope de 3,6 mètres de l'ESO, qui offre un domaine d'application restreint de cette technique, constitue une excellente nouvelle pour les astronomes. Ce type d'équipement sera bientôt supplanté en effet par de nouveaux instruments bien plus performants, destinés à équiper de plus grands télescopes tels le Très Grand Télescope de l'ESO et le Télescope Géant Européen.
« Nous attendons à présent avec impatience la première lumière du spectrographe Espresso, installé sur le VLT, afin d'effectuer une étude plus approfondie de ce système planétaire ainsi que d'autres », conclut Nuno Santos de l'IA et de l'Université de Porto, également co-auteur de l’article scientifique.
Cela vous intéressera aussi
Intéressé par ce que vous venez de lire ?
Abonnez-vous à la lettre d'information La quotidienne : nos dernières actualités du jour. Toutes nos lettres d’information