De nouveaux modèles décrivant les mécanismes des collisions ayant mené à la formation des planètes solides du Système solaire permettent de comprendre pourquoi les débris de ces collisions sont manquants. © David Mark, Pixabay
Sciences

Où sont passés les débris des collisions ayant donné naissance à la Terre ?

ActualitéClassé sous :Système solaire , formation des planètes , formation du Système solaire

Les planètes de notre Système solaire, dont la Terre, se sont formées par collisions et accrétions graduelles de corps rocheux que l'on appelle « protoplanètes ». Cependant, les processus intervenant lors de ces collisions gigantesques sont encore mal compris et les différents modèles proposés mènent souvent à un paradoxe : les débris observés dans la ceinture d'astéroïdes ne suffisent pas à décrire la formation de l'ensemble des planètes du Système solaire. De nouveaux résultats avancent cependant une explication qui permettrait de résoudre ce problème.

Cela vous intéressera aussi

[EN VIDÉO] Ce sont tous les astéroïdes connus dans notre Système solaire  Regardez comme ils sont nombreux : voici tous les astéroïdes identifiés par les astronomes depuis le premier découvert en 1801. Le nombre de découvertes a littéralement bondi depuis la fin du XXe siècle. 

Durant la formation du Système solaire, les planètes telluriques (Mercure, Vénus, la Terre et Mars) sont supposées avoir été formées par collisions et accrétions entre des corps rocheux plus petits, jusqu'à l'obtention d'un embryon planétaire.

Il manque des débris solides pour expliquer la formation du Système solaire

Ces violentes collisions sont supposées avoir engendré de nombreux débris, qui auraient alors échappé à l'attraction du corps planétaire en formation et se seraient mis en orbite autour du Soleil, formant un disque d'astéroïdes. Ce disque de débris, nous l'observons encore actuellement sous la forme de la ceinture d’astéroïdes principale, qui se situe entre les orbites de Mars et de Jupiter. En principe, les astrophysiciens devraient retrouver dans cette ceinture d'astéroïdes les marqueurs de la formation du Système solaire. Mais ce n'est pas le cas.

La quantité de débris solides orbitant au-delà de Mars n'est pas suffisante pour expliquer la formation de l'ensemble du Système solaire. Certains modèles expliquent cette lacune par le fait qu'une partie des astéroïdes de la ceinture de débris aurait bombardé par la suite les planètes en formation. Mais même dans ce cas, la composition minéralogique des éléments de la ceinture d'astéroïdes ne correspond pas à ce qui est attendu. Il manque en particulier des météorites riches en olivine, qui est le minéral principal composant le manteau des planètes telluriques. Un paradoxe connu sous le nom de « Missing mantle problem » qui reste inexpliqué depuis des décennies.

Système solaire avec la ceinture d'astéroïdes. © Daniel Roberts, Pixabay

Les roches vaporisées sous la puissance des impacts

Deux chercheurs de l'Université de l'État d'Arizona (États-Unis) ont tenté de résoudre ce problème. Ils ont ainsi simulé et modélisé des collisions de protoplanètes pour étudier les processus thermodynamiques intervenant lors de ces événements. Leurs résultats, publiés dans la revue The Astrophysical Journal Letters, montrent que ces grandes collisions génèrent finalement peu de débris solides, mais plutôt des gaz. En effet, sous la puissance de l'impact, une partie des roches est littéralement vaporisée ! Alors que les débris solides vont s'agglomérer en disques résiduels comme la ceinture d'astéroïdes, les gaz issus de la vaporisation vont plus facilement s'échapper du Système solaire, ne laissant ainsi aucune trace des événements collusifs qui les ont créés.

Ces résultats apportent une solution au problème du manque de débris solides présents dans la ceinture d'astéroïdes et au paradoxe du « Missing mantle problem ».

Cette proposition pourrait également permettre de comprendre la formation de la Lune. Le satellite terrestre aurait ainsi comme origine les débris solides issus de la formation de la Terre. Dans les précédents modèles, la Lune aurait ensuite été largement bombardée par les débris orbitant autour du Soleil, compromettant grandement ou influençant largement sa formation. Or, ce n'est pas ce qui semble s'être passé. Dans l'hypothèse développée par Gabriel Travis et Harrison Allen-Sutter, qui proposent qu'une part significative du matériel résiduel est en réalité sous forme de gaz, les impacts météoritiques sur la Lune sont bien moins importants et ne compromettent pas sa formation.

Abonnez-vous à la lettre d'information La quotidienne : nos dernières actualités du jour. Toutes nos lettres d’information

!

Merci pour votre inscription.
Heureux de vous compter parmi nos lecteurs !