Avec Instagram, Facebook a trouvé le moyen d’entraîner son IA avec de gros volumes de données faiblement supervisées. © Andrey Popov, Fotolia

Tech

Instagram : des milliards de photos pour entraîner l'IA de Facebook

ActualitéClassé sous :intelligence artificielle , facebook , Instagram

Facebook a développé un modèle d'entraînement pour son algorithme de reconnaissance d'images. Celui-ci s'est appuyé sur 3,5 milliards d'images Instagram déjà identifiées grâce aux hashtags accolés par les utilisateurs.

En intelligence artificielle, le nerf de la guerre, ce sont les données, dont il faut disposer en masse pour pouvoir entraîner les algorithmes d'apprentissage. En prime, il faut souvent que celles-ci soient structurées, c'est-à-dire identifiées par rapport à ce qu'elles représentent et, éventuellement, par rapport aux objets qu'elles contiennent. Ce travail de fourmi est la plupart du temps effectué par des humains. Or, lorsqu'il s'agit de bases de données de plusieurs millions d'images, la tâche devient colossale. Inutile de dire qu'elle est inenvisageable si l'on parle de milliards d'images...

Facebook a trouvé une alternative qui lui a permis d'entraîner son algorithme d'apprentissage profond pour la reconnaissance d'images en puisant dans une base de données de 3,5 milliards de photos. Pour cela, le réseau social s'est tout simplement servi des contenus publics publiés sur Instagram, dont il est propriétaire depuis 2012.

Vers de l'apprentissage automatique non supervisé

Le gros avantage de ces images est qu'elles sont déjà identifiées et classables grâce aux hashtags que les utilisateurs leur attribuent au moment de la publication. Pour prouver la viabilité de leur idée, les chercheurs de Facebook ont entraîné un algorithme de reconnaissance d'images avec un milliard de photos annotées par 1.500 hashtags. Résultat : avec 85,4 % de réussite au banc d'essai ImageNet (référence en la matière), l'IA (intelligence artificielle) a établi un nouveau record.

Les implications de cet « apprentissage faiblement supervisé » sont importantes, pour la reconnaissance d'images en particulier et pour l'intelligence artificielle en général. « À mesure que les jeux de données d'entraînement grandissent, le besoin d'un apprentissage faiblement supervisé et, sur le long terme, non supervisé, deviendra de plus en plus essentiel », explique Facebook.

Abonnez-vous à la lettre d'information La quotidienne : nos dernières actualités du jour.

!

Merci pour votre inscription.
Heureux de vous compter parmi nos lecteurs !

Cela vous intéressera aussi