Le Big Bang n'est pas une explosion au sens rigoureux du terme mais à ce jour, si on veut parler de colossales libérations d'énergie brutales, les éruptions associées aux disques d'accrétion des trous noirs supermassifs sont très probablement les plus importantes depuis la fin du Big Bang. On vient de débusquer la plus puissante connue dans l'Univers observable, des centaines de milliers de fois plus que celles ordinairement observées avec ces astres dans des amas de galaxies.


au sommaire


    En 1963 lorsque Maarten Schmidt, un astronomeastronome néerlandais, a fait l'analyse spectrale d'un astre, la contrepartie dans le visible d'une source radio puissante nommée 3C 273, il a stupéfié ses collègues. L'objet astronomique se présentait comme une étoile mais il se trouvait à plus de 2,4 milliards d'années-lumière de la Voie lactée, ce qui veut dire que pour être observable à une telle distance proprement cosmologique, il devait être d'une luminositéluminosité absolument prodigieuse tout en étant très compact, au point de ressembler à une étoile dans un télescope. Toute mesure faite, elle dépassait les 5 millions de millions de fois celle du SoleilSoleil, ou présenté d'une autre façon était équivalente à celle de 1.000 fois notre GalaxieGalaxie !

    D'autres quasi-stellar radio sources, des quasars selon la dénomination proposée en 1964 par l'astrophysicienastrophysicien d'origine chinoise Hong-Yee Chiu n'allaient pas tarder à être découverts. On en connaît aujourd'hui plus de 200.000 et nous avons toutes les raisons de penser que leur prodigieuse énergieénergie provient de l'accrétionaccrétion de la matièrematière par des trous noirs supermassifstrous noirs supermassifs de Kerr en rotation, pouvant contenir des milliards de massesmasses solaires comme M87*, récemment imagé par les membres de la collaboration Event Horizon Telescope.

    Des jets de matière et des disques d'accrétion chauds avec du plasma

    Ces trous noirs sont en fait présents dans la très grande majorité des grandes galaxies et ils sont à l'origine plus généralement de ce que l'on appelle des noyaux actifs de galaxiesnoyaux actifs de galaxies, (Active Galactic Nuclei ou AGN, en anglais) qui ne sont pas forcément aussi lumineux que les quasarsquasars, tout dépendant de la quantité de matière accrétée par les trous noirs. Le taux de conversion de l'énergie gravitationnelle en énergie lumineuse de la matière, chutant en direction d'un trou noir dans le disque d'accrétiondisque d'accrétion qui est chauffé par les forces de frottement entre les parties de ce disque, est supérieur à celui des réactions de fusionfusion thermonucléaire dans les étoiles, ce qui contribue à expliquer le rayonnement spectaculaire des quasars.


    Une présentation de la découverte des traces d'une gigantesque éruption causée par le trou noir supermassif de la grande galaxie au cœur de l’amas d’Ophiucus. Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © Chandra X-ray Observatory

    Une partie de la matière accrétée dans un disque autour d'un trou noir supermassif ne disparaît pas derrière son horizon des événementshorizon des événements et elle est éjectée sous forme de jets de particules très puissants. L'environnement proche d'un tel trou noir est un plasma et il peut se produire différentes instabilités dans le disque d'accrétion et son alimentation en matière, conduisant à l'équivalent des éruptions solaireséruptions solaires. On peut donc associer aussi à des trous noirs supermassifs des éruptions brusques et transitoires mais qui sont bien plus colossales. Dans le précédent article ci-dessous, Futura vous avait parlé des traces laissées dans un amas de galaxiesamas de galaxies par une de ces éruptions dont l'énergie libérée était une centaine de milliards de milliards de milliards de milliards de fois celle d'une bombe atomique.

    On connaissait d'autres exemples d'éruptions encore plus puissantes dans des amas et aujourd'hui un groupe d'astrophysiciens ayant utilisé dans le domaine des rayons Xrayons X les télescopes ChandraChandra de la NasaNasa, XMM NewtonNewton de l'ESAESA dans l'espace en combinaison avec des observations au sol des radiotélescopesradiotélescopes Murchison Widefield Array (MWA) en Australie et Giant Metrewave Radio Telescope (GMRT) en Inde, fait savoir qu'ils ont débusqué les traces de la plus grosse éruption de trou noir supermassif connue à ce jour.

    Une éruption libérant des centaines de milliers de fois plus d'énergie

    Comme l'expliquent des chercheurs, comme Simona Giacintucci dans l'article publié exposant cette découverte dans The Astrophysical Journal et disponible en accès libre sur arXiv, c'est à 390 millions d'années-lumière de la Voie lactée en direction de la constellationconstellation d'Ophiucus que se trouve dans un amas galactique connu sous le même nom le trou noir supermassif à l'origine d'une éruption cinq fois plus puissante que le record détenu jusque-là par celui contenu dans l'amas galactique MS 0735.6+7421, cette fois-ci à 2,6 milliards d'années-lumière de la Voie lactée.

    Les astrophysiciens se doutaient de quelque chose de ce genre depuis 2016 et il apparaît clairement aujourd'hui que les instruments ont mis en évidence une bulle creusée dans le gazgaz intergalactique de l'amas d'Ophiucus par un jet de trou noir supermassif particulièrement puissant temporairement, comme l'explique la vidéo ci-dessus. Simona Giacintucci donne une analogieanalogie pour se faire une idée intuitive de ce qui s'est produit : « À certains égards, cette explosion ressemble à la façon dont l'éruption du mont St. Helens en 1980 a arraché le sommet de la montagne. Une différence clé est que vous pourriez insérer quinze galaxies de la taille de la Voie lactée d'affilée dans le "cratère" que cette éruption a creusé dans le gaz chaud de l'amas ».

    Les bords de la cavité creusée dans la matière intergalactique de l'amas contiennent des électronsélectrons qui vont presque à la vitesse de la lumièrevitesse de la lumière et qui émettent des ondes dans le domaine radio, observées et mesurées par le MWA et le GMRT. L'éruption du trou noir supermassif semble terminée car Chandra ne révèle la présence d'aucun nouveau jet de matière. Les mesures de Chandra indiquent aussi que les régions les plus denses en gaz sont loin de la galaxie hébergeant le trou noir qui ne doit donc plus avoir beaucoup de matière à accréter, d'où l'absence de jets.

    Les preuves de la plus grande éruption de trou noir supermassif observée dans l'Univers jusqu'ici proviennent d'une combinaison de données en rayons X (rose) de Chandra et XMM-Newton montrant le gaz chaud diffus qui pénètre dans l'amas d'Ophiucus, et de celles en radio (bleu) des radiotélescopes <em>Murchison Widefield Array</em> et <em>Giant Metrewave Telescope</em>. Les données infrarouges du relevé 2MASS sont montrées (en blanc). L'encadré en bas à droite montre une vue agrandie basée sur les données de Chandra, tandis que des points lumineux dispersés sur l'image reflètent la distribution des étoiles et des galaxies de premier plan. L'éruption est générée par un trou noir situé dans la galaxie centrale de l'amas, qui a produit des jets et creusé une grande cavité dans le gaz chaud environnant. Les chercheurs estiment que cette explosion a libéré cinq fois plus d'énergie que le précédent record connu et des centaines de milliers de fois plus qu'un amas de galaxies typique. © Rayon X: Chandra: Nasa/CXC/NRL/S. Giacintucci, et al., XMM: ESA/XMM ; Radio: NCRA/TIFR/GMRT ; Infrarouge: 2MASS/UMass/IPAC-Caltech/NASA/NSF 
    Les preuves de la plus grande éruption de trou noir supermassif observée dans l'Univers jusqu'ici proviennent d'une combinaison de données en rayons X (rose) de Chandra et XMM-Newton montrant le gaz chaud diffus qui pénètre dans l'amas d'Ophiucus, et de celles en radio (bleu) des radiotélescopes Murchison Widefield Array et Giant Metrewave Telescope. Les données infrarouges du relevé 2MASS sont montrées (en blanc). L'encadré en bas à droite montre une vue agrandie basée sur les données de Chandra, tandis que des points lumineux dispersés sur l'image reflètent la distribution des étoiles et des galaxies de premier plan. L'éruption est générée par un trou noir situé dans la galaxie centrale de l'amas, qui a produit des jets et creusé une grande cavité dans le gaz chaud environnant. Les chercheurs estiment que cette explosion a libéré cinq fois plus d'énergie que le précédent record connu et des centaines de milliers de fois plus qu'un amas de galaxies typique. © Rayon X: Chandra: Nasa/CXC/NRL/S. Giacintucci, et al., XMM: ESA/XMM ; Radio: NCRA/TIFR/GMRT ; Infrarouge: 2MASS/UMass/IPAC-Caltech/NASA/NSF 

     


    Une gigantesque éruption de trou noir a laissé des traces dans un amas de galaxies

    Article de Laurent SaccoLaurent Sacco publié le 27/12/2019

    Les éruptions associées aux disques d'accrétion des trous noirs supermassifs sont très puissantes. Grâce au satellite Chandra, on vient de détecter les traces laissées par une de ces éruptions dont l'énergie libérée était une centaine de milliards de milliards de milliards de milliards de fois celle d'une bombe atomique.

    Le télescope Chandra permet à l'Humanité d'étudier l'UniversUnivers observable en rayons X depuis 20 ans maintenant. Même s'il est aujourd'hui concurrencé par d'autres yeuxyeux en orbiteorbite dans ce domaine de la lumière comme Spektr-RG, le HubbleHubble russe des rayons X, il reste un formidable instrument capable de révéler le comportement spectaculairement violent du cosmoscosmos.

    Un article récemment publié dans The Astrophysical Journal Letters et en libre accès sur arXiv le montre bien. Il est l'œuvre d'une équipe internationale d'astrophysiciens qui a observé avec Chandra un amas de galaxies nommé SPT-CLJ0528-5300, ou SPT-0528 en abrégé. Cet amas contient une galaxie centrale particulièrement brillante dans le domaine radio en raison de la présence d'un noyau actif de galaxie. Les AGN, comme on les appelle en anglais, sont produits par des trous noirs supermassifs accrétant de la matière. Ils sont donc entourés d'un disque d'accrétion auquel sont parfois associés de puissants jets de matière. Quand les AGN sont particulièrement actifs, ils sont également formidablement lumineux et peuvent alors apparaître comme ce que l'on appelle des quasars.


    Une vidéo pour les 20 ans de Chandra. Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © Steer Films & Nasa, CXC, SAO

    Une éruption de trou noir équivalente à 1038 explosions nucléaires

    On sait qu'il existe un lien de coévolution entre les trous noirs supermassifs et les galaxies qui les hébergent. Mais on s'interroge aussi sur des liens entre l'évolution des trous noirs supermassifs et celle des amas de galaxies où ils se trouvent. Récemment, le cosmologiste Romain Teyssier avait expliqué à Futura que les trous noirs supermassifs et les galaxies croissaient essentiellement via des filaments de gaz froids canalisés par des filaments de matière noirematière noire entre galaxies et amas de galaxies. Mais ces processus semblent affectés par les ventsvents galactiques au moins produits par le souffle des explosions de supernovaesupernovae. La question se pose également au sujet des vents de matière et de rayonnement générés par les trous noirs supermassifs. On sait que certains d'entre eux sont les lieux de sortes d'éruptions colossales.

    SPT-0528, comme tous les amas, est plongé dans un plasma très chaud, à plusieurs millions de degrés, ce qui le fait rayonner en rayons X. Nous l'observons avec Chandra tel qu'il était il y a 6,7 milliards d'années en raison de la valeur de la vitesse de la lumière. Les chercheurs ont mis en évidence deux cavités dans ce plasma. Tout indique qu'elles ont été creusées il y a plus longtemps encore par les jets alors émis lors d'une puissante éruption de l'AGN central de SPT-0528.

    Les astrophysiciens ont calculé l'énergie nécessaire pour creuser ces deux cavités et elle est exceptionnelle puisqu'elle correspond à celle que libéreraient 1038 explosions nucléaires sur Terre soit 1054 joulesjoules. C'est la plus puissante éruption de ce genre déterminée dans un amas de galaxies.

    Des cavités géantes dans le milieu intergalactique dans l'amas de galaxies SPT-0528 émettant des rayons X (montrés en bleu, comme observés par l'Observatoire de rayons X Chandra de la Nasa) ont été creusées par une explosion de trous noirs. Les données des rayons X sont superposées aux observations dans le visible du télescope spatial Hubble (en rouge-orange), où la galaxie centrale qui héberge probablement le trou noir supermassif coupable est également visible. La barre en bas à droite donne l'échelle en années-lumière (<em>light years,</em> en anglais). © Michael Calzadilla
    Des cavités géantes dans le milieu intergalactique dans l'amas de galaxies SPT-0528 émettant des rayons X (montrés en bleu, comme observés par l'Observatoire de rayons X Chandra de la Nasa) ont été creusées par une explosion de trous noirs. Les données des rayons X sont superposées aux observations dans le visible du télescope spatial Hubble (en rouge-orange), où la galaxie centrale qui héberge probablement le trou noir supermassif coupable est également visible. La barre en bas à droite donne l'échelle en années-lumière (light years, en anglais). © Michael Calzadilla