Simulation 3D d’une nacelle drone auto-portée en phase d’envol au-dessus des miroirs de l’hypertélescope. © hypertescope.org
Sciences

Bienvenue dans l'ère des hypertélescopes

ActualitéClassé sous :télescope géant , hypertelescope , exoplanète

-

[EN VIDÉO] Dans les secrets des trous noirs grâce à un radiotélescope sur la Lune  Le 10 avril 2019, des chercheurs dévoilaient la toute première image d’un trou noir supermassif. Une image à couper le souffle. Mais qui restait un peu floue. Pas de quoi en tirer des informations précises. Pour cela, préviennent les astronomes, il faudra agrandir l’Event Horizon Telescope. En construisant un radiotélescope sur la Lune ! 

L'hypertélescope « amélioré » pourrait imager plusieurs étoiles simultanément et contribuer également à la recherche de la vie dans d'autres systèmes solaires.

Des chercheurs ont conçu une nouvelle caméra qui pourrait permettre aux hypertélescopes d'imager plusieurs étoiles à la fois. Cette conception « améliorée »  permet d'obtenir des images à très haute résolution d'objets extrasolaires. Les cibles visées pourraient être des exoplanètes mais aussi des pulsars, des amas globulaires voire des galaxies éloignées.

Antoine Labeyrie, professeur émérite au Collège de France et à l'Observatoire de la Côte d'Azur, mais aussi pionnier dans cette recherche, précise : « Un hypertélescope multichamp peut capturer une image très détaillée d'une étoile, montrant peut-être aussi ses planètes et même les détails de la surface de ces dernières. Il permettrait d'observer les exoplanètes avec suffisamment de détails pour que la spectroscopie entre en scène afin de rechercher des preuves de la vie photosynthétique ».

Dans la revue Optics Letters de la société Optical society's (OSA), le même Antoine Labeyrie et un collège de chercheurs pluri-institutionnel apportent des résultats de modélisation optique venant confirmer le fait que la conception multichamp peut considérablement étendre la couverture étroite du champ de vision des hypertélescopes développés à ce jour.

L'hypertélescope est un projet expérimental, installé dans les Alpes de Haute Provence. © hypertelescope.org

Un miroir agrandi

Les grands télescopes optiques utilisent des miroirs concaves pour concentrer la lumière des objets observés et la taille de ces miroirs n'a cessé d'augmenter. Mais ce type de miroir a une limite au niveau de la taille justement. Les hypertélescopes sont conçus pour surmonter cette limite par l'utilisation astucieuse de grands réseaux de miroirs qui peuvent être espacés sur de grandes distances. Une version grandeur nature de ce type de télescope est actuellement en construction dans les Alpes françaises.

Pour ce projet, les chercheurs ont utilisé des modèles informatiques afin d'obtenir une conception d'hypertélescope avec un champ de vision beaucoup plus large. La formule pourrait être utilisée sur Terre, mais aussi dans un cratère de la Lune ou même à très grande échelle dans l'espace. Certes, la construction d'un hypertélescope dans l'espace nécessiterait une armada de petits miroirs espacés pour former un très grand miroir concave. Ce dernier concentrerait alors la lumière de l'objet observé vers un vaisseau spatial séparé transportant la caméra ainsi que d'autres composants optiques nécessaires.

La conception multichamp est « un ajout plutôt modeste au système optique d'un hypertélescope, mais devrait considérablement améliorer ses capacités », a déclaré Antoine Labeyrie et d'ajouter : « Une version finale déployée dans l'espace pourrait avoir un diamètre des dizaines de fois plus grand que sur Terre et pourrait être utilisée pour révéler des détails d'objets extrêmement petits tels que le pulsar du crabe, une étoile à neutrons qui ne mesurerait que 20 kilomètres. »

Schéma de l’installation de l’hypertélescope dans le vallon de la Moutière. © hypertelescope.org

Un système micro-optique

Les hypertélescopes utilisent ce que l'on appelle la « densification des pupilles » pour concentrer la collecte de la lumière afin de former des images haute résolution. Ce processus limite le champ de vision empêchant la formation d'images d'objets diffus ou de grande taille (amas d'étoiles globulaires, galaxie). Les chercheurs ont alors développé un système micro-optique qui peut être utilisé avec la caméra de l'hypertélescope pour générer simultanément des images distinctes de chaque champ d'intérêt. Pour les amas d'étoiles, par exemple, cela permet d'obtenir des images distinctes de chacune des milliers d'étoiles... en même temps.

La conception multichamp proposée peut être comprise comme un instrument agrégé de plusieurs hypertélescopes indépendants, chacun avec un axe optique différemment incliné qui lui donne un champ d'imagerie unique. Les images adjacentes sont alors concentrées sur un seul capteur final. Ce projet nécessite également le développement de nouveaux composants -- composants d'optique adaptative pour corriger les imperfections optiques résiduelles dans la conception hors axe, développement de techniques d'alignement et de logiciels de contrôle afin que la nouvelle caméra puisse être utilisée avec le prototype dans les Alpes.

Tout cela laisse entrevoir des découvertes exceptionnelles au niveau des exoplanètes et d'une importance majeure concernant la réponse à la question de la place de l'humanité dans cette immensité qui lui est offerte en observation.

Abonnez-vous à la lettre d'information La quotidienne : nos dernières actualités du jour. Toutes nos lettres d’information

!

Merci pour votre inscription.
Heureux de vous compter parmi nos lecteurs !