Sciences

Des forces électriques ont-elles aidé à former les futures planètes ?

ActualitéClassé sous :physique , accrétion , poussière

Dans la formation des planètes à partir des poussières, certaines étapes sont bien comprises et d'autres moins, comme la toute première, au cours de laquelle ces petites particules submillimétriques s'agrègent entre elles. Pourquoi le feraient-elles ? À cause de charges électriques créées par leurs frottements mutuels, avancent des chercheurs, inspirés par le comportement de grains de sel dans l'ISS et qui ont mené une expérience sur Terre.

Une vue d'artiste d'une expérience reproduisant, à l'aide de sphères silicatées chargées, ce qui s'est peut-être produit dans le disque protoplanétaire à l'origine des planètes du Système solaire. © University of Chicago

Le modèle de la nébuleuse protosolaire qui devient un disque protoplanétaire où naissent les planètes, c'est-à-dire le modèle cosmogonique de Kant-Laplace, a été vigoureusement développé pendant le XXe siècle. Sa description quantitative pose de fascinants problèmes de mécanique céleste, de mécanique des fluides mais aussi de chimie comme l'ont montré notamment Viktor Safronov, Georges Wetherhill et Harold Urey. Des télescopes comme Hubble, Spitzer et Hershell ont permis de démontrer que le modèle de Kant-Laplace était bien correct dans les grandes lignes, en plus d'être universel. Mais dans les détails, plusieurs points restent obscurs.

Dans le scénario développé au cours du XXe siècle, un disque protoplanétaire riche en poussière et en gaz devient un disque contenant des planétésimaux de 1 à 100 km de diamètre qui entrent en collision pour former des protoplanètes puis des planètes. La formation des protoplanètes est plutôt bien comprise. En revanche, les différentes étapes conduisant des poussières à ces planétésimaux le sont beaucoup moins.

Il est par exemple difficile d'expliquer l'accrétion des objets de plus de 1 m de diamètre. Toutefois, l'astronome Pierre Barge et son collègue le physicien Joël Sommeria ont proposé, il y a presque 20 ans, un modèle résolvant cette énigme de la formation des planètes. Il repose sur l'existence de tourbillons anticycloniques au sein des disques protoplanétaires. Il semble que ces tourbillons existent, comme le montre l'observation de l'un d'entre eux par le radiotélescope Alma autour de l'étoile Oph-IRS 48.

Don Pettit en train d'effectuer des expériences avec des grains de sel, de thé et de sucre en microgravité à bord de l'ISS. Ces grains s'agglomèrent très rapidement comme on peut le voir sur ces images. © Plasma Ben, YouTube

Des forces électriques entre les poussières du disque protoplanétaire

Un autre point d'achoppement de la théorie est la constitution de ces objets de 1 m de diamètre à partir de poussières submillimétriques dans un gaz turbulent qui s'agglutinent. Une réponse possible En 2004, l'astronaute Stanley G. Love regardait une retransmission vidéo de son collègue Don Pettit, à bord de l'ISS, en train de réaliser des expériences de microgravité avec des grains de sel en impesanteur lorsqu'il eut une illumination. « Don ! Tu te rends compte que tu viens de résoudre un des problèmes de l'accrétion planétaire ? » s'est-il exclamé.

Ces grains de sel, enfermés dans un sachet plastique, s'aggloméraient spontanément et très rapidement sous ses yeux. Les deux hommes ont ensuite publié un article dans lequel ils expliquent que ce phénomène était peut-être dû à des forces électrostatiques entre les grains de sel qui se chargeaient en raison de frottements. Si tel est bien le cas, le même mécanisme était peut-être à l'œuvre dans le disque protoplanétaire.

La vidéo réalisée par les physiciens de l'université de Chicago montre le ballet des particules en chute libre orchestré par des forces électrostatiques dans leur expérience. © Renuka, YouTube

Un groupe de chercheurs états-uniens, intéressés eux aussi par la dynamique des milieux granulaires constitués de particules submillimétriques, rencontrés dans l'industrie, a réalisé une expérience sur Terre qui explore cette hypothèse. Victor Lee et ses collègues de l'université de Chicago ont utilisé une chambre à vide transparente de 3 m de hauteur dans laquelle des grains silicatés à base de dioxyde de zirconium d'environ un dixième de millimètre étaient en chute libre. Ces grains devaient donc pouvoir simuler le comportement des grains silicatés et réfractaires présents dans la zone du disque protoplanétaire où sont nées la Terre et les autres planètes rocheuses du Système solaire.

Pour observer ce qui allait se passer, les chercheurs n'ont pas hésité à faire tomber parallèlement à la chambre à vide une caméra électronique ultrarapide coûtant plus de 20.000 euros. Les observations ont montré qu'en effet, des particules chargées exercent entre elles des forces attractives et répulsives. Certaines particules se mettaient même en orbite à la façon des planètes tandis que d'autres s'assemblaient en agrégats.

Ces résultats qui ont donné lieu à une publication dans Nature  sont certes très intéressants mais ils sont à prendre avec précaution. Dans cette expérience, les grains portent d'importantes charges électriques, bien supérieures à celles qui étaient sans doute possibles dans le disque protoplanétaire selon l'astrophysicien physicien Jürgen Blum de la *Technische Universität Braunschweig (Allemagne), un spécialiste de la formation des planètes.

Cela vous intéressera aussi