Sur cette vue d’artiste figure la trajectoire de l’étoile S2 passant à proximité du trou noir supermassif situé au centre de la Voie Lactée. À mesure qu’elle s’approche du trou noir, l’étoile arbore une couleur toujours plus rougeâtre. Cet effet, prédit par la théorie de la relativité générale d’Einstein, résulte de la présence d’un champ gravitationnel très intense. Sur ce graphe, le rougissement ainsi que la taille des objets ont été volontairement exagérés. © ESO/M. Kornmesser

Sciences

Gravity : la relativité générale d’Einstein vérifiée près de notre trou noir supermassif

ActualitéClassé sous :astrophysique , Univers , GRAVITY

Des observations menées grâce aux instruments équipant le VLT de l'ESO au Chili ont conduit au premier test réussi de la théorie de la relativité d'Einstein à proximité d'un trou noir supermassif. En l'occurrence, il s'agit d'un test avec l'effet de décalage spectral vers le rouge de l'étoile S2 en orbite dans la Voie lactée autour de Sgr A*.

La théorie d’Einstein de la relativité générale est plus que centenaire. Bien plus que pour son découvreur, elle témoigne de la mystérieuse capacité de l'esprit humain à anticiper la structure de la réalité, bien loin de l'univers quotidien qui a accompagné l'évolution du cerveau d'Homo, en se basant sur des mathématiques qu'on n'y trouve pas. Toute confirmation des prédictions de la relativité générale peut être vue comme un triomphe mais également comme un désastre car on attend impatiemment de pouvoir arpenter et comprendre de nouveaux aspects plus profonds et plus vastes du cosmos. Cela serait justement possible si la théorie d'Einstein montrait ses limites.

Sagittarius A*, le trou noir supermassif laboratoire 

Comme prévu pour le mois de mai 2018, l'une des étoiles les plus fameuses en orbite autour du trou noir central de la Voie lactée s'est retrouvée à passer au périastre, c'est-à-dire au point le plus proche de  Sgr A* sur cette orbite. Baptisée S2, elle s'est retrouvée à seulement 16 heures-lumière environ, soit 120 fois la distance Terre-Soleil ou encore quatre fois la distance Soleil-Neptune du trou noir supermassif de quatre millions de masses solaires que l'on pense être vers le centre de notre Galaxie. Cela correspond aussi à une distance équivalente à presque 1.500 rayons de Schwarzschild de ce trou noir. S2 se retrouve à ce périastre tous les 16 ans environ et à ce moment là, elle parcourait une portion de son orbite elliptique à presque 2,7 % de la vitesse de la lumière soit 8.000 km/s.

Les astrophysiciens relativistes attendaient impatiemment cet évènement car, comme Futura l'expliquait dans un précédent article (voir ci-dessous), on pouvait s'attendre à des effets du champ de gravitation du trou noir Sagittarius A* qui ne soient pas décrits par la théorie de Newton de la gravitation, et peut-être même aussi pas complètement par la théorie d'Einstein, ouvrant une fenêtre sur une nouvelle physique.

Comment l'étoile S2 a apporté une nouvelle confirmation de la théorie de la relativité générale. Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © European Southern Observatory (ESO)

L'occasion de pouvoir également sonder le champ de gravitation d'un trou noir dans un régime, où il est intense, ne pouvait pas être manquée. C'est pourquoi de nombreux chercheurs et ingénieurs l'avaient saisie dans le cadre du consortium Gravity dirigé par l'Institut allemand Max Planck pour la physique extraterrestre (MPE) et impliquant le CNRS, l'Observatoire de Paris - PSL, l'Université Grenoble-Alpes et plusieurs autres universités françaises (ainsi que l'université de Cologne et le Centre portugais d'astrophysique et de la gravitation). Il s'agissait de pouvoir combiner par une méthode d'interférométrie des observations dans l'infrarouge faite par plusieurs des télescopes du Very Large Telescope (VLT) de l'ESO pour faire l'équivalent d'un télescope de plus de 100 mètres de diamètre, tout en analysant la lumière à l'aide de trois instruments, Naco, Sinfoni, et Gravity. Le challenge était de pouvoir observer et mesurer les mouvements heure par heure de S2, avec une précision de 50 microsecondes d'angle, ce qui revient à observer une balle de tennis posée sur la Lune depuis la Terre.

La première mesure de l'effet de décalage spectral d'un trou noir

L'ESO vient d'annoncer aujourd'hui, via une conférence de presse qu'accompagne la mise en ligne sur arXiv d'un article expliquant les résultats scientifiques, qu'un point d'orgue de 26 années d'observations des étoiles autour de Sgr A* avec ses télescopes avait été atteint. En effet la théorie de la relativité générale implique que le champ de gravitation d'un astre produit un décalage vers le rouge de lumière qu'il peut émettre, d'autant plus important que celui-ci est massif ou dense, et ce, selon une loi précise.

C'est bel et bien ce qui a été observé avec S2, et tout comme ce fut le cas il y a bientôt un siècle avec la déviation des rayons lumineux d'étoiles par le Soleil observée et mesurée lors de la fameuse éclipse de 1919, les effets mesurés ne peuvent pas s'expliquer avec la théorie de Newton de la gravitation mais sont au contraire en plein accord, à la précision des mesures atteintes, avec la théorie d'Einstein.

C'est la première fois que cet effet de décalage est mesuré pour le champ gravitationnel d'un trou noir. On le connaissait auparavant, notamment avec des naines blanches (la première détection solide date de 1954 avec 40 Eridani B), et on pouvait le mesurer dans le champ beaucoup plus faible de la Terre via la fameuse expérience de Pound et Rebka.

Ce nouveau succès de la théorie de la relativité générale devrait bientôt être suivi d'un autre, très probable. En effet, les observations en cours devraient permettre d'observer la composante relativiste de la précession du périastre de S2, l'équivalent de la fameuse précession relativiste du périhélie de Mercure. Il y a 16 ans, bien que l'on ne disposait pas d'instruments aussi performants qu'aujourd'hui, un précédent passage au périastre de S2 avait été observé, permettant donc une comparaison en cours avec celui de 2018.

  • La théorie de la relativité générale prédit un effet de décalage spectral vers le rouge pour une source de lumière dans un champ de gravitation.
  • L'effet était connu en laboratoire sur Terre mais aussi avec des naines blanches. Il permet d'observer des écarts entre la prédiction de la théorie d'Einstein et celle de Newton et ce, d'autant plus que le champ de gravité est fort.
  • L'observation du passage au périastre de l'étoile S2 en orbite autour du trou noir supermassif de la Voie lactée avec des instruments équipant le VLT au Chili (notamment celui appelé Gravity) a montré un tel décalage.
  • C'est la première observation de cet effet dans le champ de gravitation d'un trou noir et aussi un nouveau test réussi par la théorie de la relativité générale.
Pour en savoir plus

Gravity, braqué sur le trou noir galactique, prêt à vérifier la relativité générale

Article de Xavier Demeersman publié le 25/06/2016

Avec son trou noir supermassif de quatre millions de masses solaires, le centre de la Galaxie est, pour les astrophysiciens, le laboratoire idéal pour tester la théorie de la relativité générale d'Einstein. Le nouvel instrument Gravity du VLT, conçu pour l'ausculter, n'a pas déçu : il vient d'offrir ses premières observations d'une étoile se déplaçant tout près de Sagittarius A*, le centre de notre monde galactique. En 2018, elle en sera si près que les effets relativistes seront détectables directement.

Au cours de l'été 2015, dix ans après le lancement du projet, une équipe internationale d'astronomes et d'ingénieurs installait l'instrument Gravity dans les tunnels aménagés sous l'un des plus grands observatoires au monde, le VLT (Very Large Telescope), au sommet du mont Paranal au Chili. Travaillant en interférométrie, ce système optoélectronique combine la lumière de quatre télescopes auxiliaires de 1,8 mètre du VLT (Auxiliary Telescopes, ou AT) pour créer un miroir virtuel de 130 mètres de diamètre avec le Very Large Telescope Interferometer (VLTI), ce qui apporte une résolution bien plus importante.

L'instrument a terminé sa première campagne d'observation en janvier 2016. « Gravity va permettre d'étendre l'interférométrie optique à l'observation d'objets beaucoup moins lumineux, et repoussera bien au-delà des limites actuelles la sensibilité de l'astronomie à haute résolution angulaire » commentait alors le directeur des opérations, Franck Eisenhauer, de l'institut Max Planck.

À présent, les préliminaires s'achèvent et les tests réalisés avec l'instrument accouplé aux quatre géants, les unités de 8,2 mètres de diamètre chacun (Unit Telescopes, ou UT), sont très prometteurs, vient d'annoncer l'ESO, l'Observatoire européen austral. En comparaison avec les observations d'une seule de ces unités, les gains en résolution et en précision sur la position d'un objet sont d'un facteur 15. Elle atteindra bientôt, par exemple, une précision centimétrique pour un objet situé sur la Lune.

Animation montrant le chemin d’un faisceau de lumière à travers l’instrument Gravity. Elle ne permet pas vraiment de comprendre mais montre bien la complexité de cette installation reliée à quatre télescopes. Pour que l’interférométrie fonctionne, les chemins de la lumière doivent se superposer avec la précision d’une fraction de longueur d’onde, soit moins d’un micromètre. © MPE

La théorie de la relativité générale à l'épreuve de Gravity

L'objectif principal de Gravity est l'étude du champ gravitationnel intense des trous noirs, et plus particulièrement de celui de Sagittarius A*, qui avec 4 millions de masses solaires, appartient à la catégorie des supermassifs. Invisibles, ceux-ci sont trahis par les danses des étoiles piégées autour d'eux. C'est de cette façon que la position et la masse de Sgr A*, tapi en plein cœur de notre Galaxie, à environ 25.000 années-lumière de la Terre, a pu être inférée en 2002.

Aussi, en traquant avec la plus grande précision possible le mouvement des étoiles qui l'entourent, les chercheurs entendent bien en apprendre davantage (taux de rotation, masse, charge électrique) sur ce corps sombre. Et surtout, comme le nom du projet l'indique, ils vont pouvoir confronter les mesures aux prédictions de la théorie de la relativité générale d'Albert Einstein. En effet, pour les physiciens, le centre de la Voie lactée constitue un laboratoire idéal, conforme à leurs attentes.

La vue perçante de l'instrument (10 microsecondes d'angle pour déterminer la position des objets, et une résolution de quatre millisecondes d'angle pour imager les objets) a permis récemment de suivre l'étoile S2, une très proche voisine de Sgr A*, qui tourne autour de lui en seize années. « Lorsque la lumière en provenance de l'étoile a pour la première fois interféré, l'équipe a vécu un moment fantastique, venant couronner huit années de dur labeur, raconte Franck Eisenhauer. Dans un premier temps, nous avons stabilisé l'interférence sur une étoile proche et brillante. Quelques minutes plus tard seulement, nous étions en mesure d'observer l'interférence générée par l'étoile de faible luminosité. » Un exploit dont ils sont très fiers.

Animation des étoiles les plus proches du trou noir supermassif au centre de la Voie lactée. L’une d’elles, S2, sera au plus près de Sagittarius A* en 2018. Une aubaine pour l’équipe de Gravity. © ESO, L. Calçada

Des observations cruciales en 2018

Les premiers résultats de Gravity, instrument très complexe à mettre en œuvre, sont donc très encourageants. Tant mieux, car en 2018, l'étoile S2, qui se déplace à 2,5 % de la vitesse de la lumière (30 millions de km/h), atteindra le point de son orbite le plus proche du trou noir supermassif. Elle n'en sera distante que de 18 milliards de kilomètres, soit environ 17 heures-lumière, ou encore 4 fois la distance entre Neptune et le Soleil. Les effets gravitationnels se feront donc fortement sentir, ce qui promet des observations cruciales.

Pour la toute première fois, précise l'ESO, l'équipe pourra mesurer deux effets relativistes qu'occasionne la rotation d'une étoile autour d'un trou noir : le redshift gravitationnel, résultant de la perte d'énergie que subit la lumière de l'étoile lorsqu'elle s'échappe de l'intense champ gravitationnel du trou noir, et la précession du péricentre, un effet observé à plus petite échelle avec l'orbite de Mercure autour du Soleil (avec une intensité toutefois 6.500 fois plus faible qu'à proximité du trou noir galactique).

Abonnez-vous à la lettre d'information La quotidienne : nos dernières actualités du jour.

!

Merci pour votre inscription.
Heureux de vous compter parmi nos lecteurs !

Cela vous intéressera aussi

Trous noirs : un terrifiant phénomène  Comment chasser les trous noirs puisqu'on ne les voit pas ? En repérant les effets, parfois dantesques, qu'ils imposent à leur environnement, par exemple en accélérant la matière. On peut aussi, depuis peu, « écouter » le bruit de leurs collisions en détectant les ondes gravitationnelles.