au sommaire


    Une autre question soulevée par l'existence de l'algorithme d'EuclideEuclide est la contradiction apparente entre le discours sur les mathématiques qui, depuis les Grecs, accorde peu de place au calcul, et la pratique mathématique, qui lui en confère une si grande. Comment les Grecs et leurs successeurs ont-ils pu prétendre que le raisonnement seul suffisait, alors qu'ils construisaient des algorithmes, comme celui d'Euclide ?

    Un des plus anciens fragments des Éléments d'Euclide qui nous soit parvenu, découvert à Oxyrhynque, et qui daterait d'entre 75 et 125 AC. Nous ne disposons pas de plus d'un pour cent du texte d'Euclide, dans des sources antérieures à la fin du IXe siècle. © DP

    Un des plus anciens fragments des Éléments d'Euclide qui nous soit parvenu, découvert à Oxyrhynque, et qui daterait d'entre 75 et 125 AC. Nous ne disposons pas de plus d'un pour cent du texte d'Euclide, dans des sources antérieures à la fin du IXe siècle. © DP

    Examinons encore une fois le calcul du plus grand diviseur commun des nombres 90 et 21 au moyen de cet algorithme. Une première manière de décrire ce que nous avons fait est de dire que nous avons remplacé successivement le couple (90, 21) par le couple (21, 6) puis (6, 3) et enfin par le nombre 3 « à l'aveugle », en suivant les prescriptions de l'algorithme, dont nous avons, par ailleurs, démontré qu'il calculait bien le plus grand diviseur commun des deux nombres. Une autre manière de présenter les choses consiste à justifier ce remplacement du couple (90, 21) par le couple (21, 6) par une démonstration du fait que le plus grand diviseur commun de 90 et 21 est égal à celui de 21 et 6. Pour cela, il suffit d'utiliser l'un des théorèmes que nous avons évoqués : le plus grand diviseur commun de deux nombres a et b est le même que celui de b et r, où le nombre r est le reste de la division de a par b. Dans cette manière de présenter les choses, nous pouvons taire le fait que nous avons utilisé l'algorithme d'Euclide, et simplement dire que nous avons démontré que le plus grand diviseur commun de 90 et 21 est 3 en utilisant les deux théorèmes précédents.

    Plus précisément, en plus du résultat 3, l'algorithme d'Euclide nous a permis de construire un raisonnement qui montre que le plus grand diviseur commun de 90 et 21 est 3. Une fois que le raisonnement est construit, peu importe sa provenance: il est là et cela suffit. En supposant que les Grecs et leurs successeurs concevaient le calcul comme un outil pour construire des raisonnements, lequel outil doit rester dans l'ombre de l'objet qu'il sert à construire, on retrouve une certaine cohérence entre leur pratique mathématique, qui accorde une certaine place au calcul, et leur discours, qui le mentionne à peine.