Mots-clés |
  • physique

Boson de Higgs : l'origine des masses des quarks et leptons précisée

Les prédictions les plus importantes du modèle électrofaible basé sur le mécanisme de Brout-Englert-Higgs (BEH) concernent les masses des bosons W et Z. La découverte du boson de BEH vient d'ailleurs de la détection de sa désintégration en ces particules ainsi qu'en un autre boson, le photon. Grâce au détecteur Atlas, au Cern, on s'approche de la preuve que le mécanisme BEH explique aussi les masses des particules de matière, et pas seulement celles des bosons, ces médiateurs des interactions. Ce serait une confirmation de plus du modèle standard.

L'un des pères du mécanisme de BEH, le prix Nobel de physique François Englert, a été photographié alors qu'il visitait l'un des deux détecteurs géants de particules du Cern, Atlas. Ce même détecteur a fourni des indications sérieuses de l'existence d'au moins un mode de désintégration du boson de BEH en deux tauons, des leptons qui ressemblent à l'électron mais beaucoup plus lourds. Comme prévu par le modèle standard, le champ de BEH expliquerait les masses des fermions, et pas seulement celles des bosons du modèle électrofaible. © Claudia Marcelloni, Cern L'un des pères du mécanisme de BEH, le prix Nobel de physique François Englert, a été photographié alors qu'il visitait l'un des deux détecteurs géants de particules du Cern, Atlas. Ce même détecteur a fourni des indications sérieuses de l'existence d'au moins un mode de désintégration du boson de BEH en deux tauons, des leptons qui ressemblent à l'électron mais beaucoup plus lourds. Comme prévu par le modèle standard, le champ de BEH expliquerait les masses des fermions, et pas seulement celles des bosons du modèle électrofaible. © Claudia Marcelloni, Cern

Boson de Higgs : l'origine des masses des quarks et leptons précisée - 3 Photos

PDF

Lorsque Steven Weinberg et Abdus Salam ont proposé en 1967 leur théorie unifiée des forces électromagnétique et nucléaire faible, il leur a fallu utiliser le mécanisme de Brout-Englert-Higgs (BEH) pour doter les bosons W et Z de masses. Ces bosons sont des cousins du photon, et ils peuvent être émis ou absorbés par les quarks et les leptons. Il en découle qu’ils sont responsables de la désintégration bêta du neutron et permettent aux neutrinos d’interagir avec l’électron ou le proton, pour ne citer que ces particules.

Le mécanisme BEH n’explique pas la masse des nucléons qui, rappelons-le, ne sont pas des particules élémentaires. On sait que ce qui rend compte de la masse du proton, par exemple, ce sont les champs de gluons de l’interaction nucléaire forte décrite par la chromodynamique quantique, la QCD. Toutefois, le modèle standard, c'est-à-dire la théorie électrofaible jointe à la QCD, permet naturellement de générer aussi des masses pour les quarks composant les nucléons via le mécanisme BEH. Il en est de même pour les masses des leptons comme le muon ou le tauon.

Ce diagramme de Feynman décrit l'une des nombreuses réactions prédites par le modèle standard des particules élémentaires. Deux quarks dans une collision de protons émettent deux bosons W ou Z qui fusionnent en se transformant en boson de Brout-Englert-Higgs (H0). Ce boson se désintègre ensuite en une paire de tauon-antitauon (τ).
Ce diagramme de Feynman décrit l'une des nombreuses réactions prédites par le modèle standard des particules élémentaires. Deux quarks dans une collision de protons émettent deux bosons W ou Z qui fusionnent en se transformant en boson de Brout-Englert-Higgs (H0). Ce boson se désintègre ensuite en une paire de tauon-antitauon (τ). © DP

Couplages de Yukawa et masses des quarks et leptons

La génération des masses des quarks et des leptons se fait au moyen de ce que l’on appelle des couplages de Yukawa. Ces couplages interviennent entre un champ scalaire, le champ de BEH, et un champ de fermions similaire à ceux dont les quarks et les leptons sont des quanta d’excitation. Le premier physicien ayant considéré ces couplages fut Hideki Yukawa lorsqu’il a proposé sa théorie des forces nucléaires fortes entre les protons et les neutrons. Il y avait là aussi un champ scalaire, celui du méson pi, couplé aux champs de nucléons dans un noyau.

Lors de la découverte du boson de Brout-Englert-Higgs avec les détecteurs Atlas et CMS, ce sont les modes de désintégration de cette particule en boson W, Z et surtout en photons qui ont été mesurés de façon suffisamment précise pour emporter la conviction des physiciens. À strictement parler, on avait donc une preuve de l’existence du mécanisme de BEH uniquement en ce qui concerne le cœur de la théorie électrofaible. La question de savoir d’où provenaient les masses des quarks et des leptons restait en suspens.

Cette image issue des données d'Atlas correspond à la production de deux leptons tau, un tauon et son antiparticule, par la désintégration d'un boson de Brout-Englert-Higgs. L'un des tauons s'est ensuite désintégré en un électron (ligne bleue) et un muon (ligne rouge). Ce sont surtout les modes de désintégration du boson BEH en deux photons ou deux bosons W ou Z qui avaient été observés jusqu'ici. La détection d'indices convaincants de modes de détection fermioniques est une première.
Cette image issue des données d'Atlas correspond à la production de deux leptons tau, un tauon et son antiparticule, par la désintégration d'un boson de Brout-Englert-Higgs. L'un des tauons s'est ensuite désintégré en un électron (ligne bleue) et un muon (ligne rouge). Ce sont surtout les modes de désintégration du boson BEH en deux photons ou deux bosons W ou Z qui avaient été observés jusqu'ici. La détection d'indices convaincants de modes de détection fermioniques est une première. © Cern

Une désintégration en tauons à 4,1 sigma

Les scientifiques savaient bien sûr que les couplages de Yukawa devaient permettre au boson de BEH de se désintégrer en donnant des quarks et des leptons, donc des fermions et pas seulement des bosons. Ils avaient même des indications de l’occurrence de ces modes de désintégration, mais pas encore de preuve solide.

On y est presque, au moins en ce qui concerne la désintégration du boson de BEH en deux tauons, des cousins lourds de l’électron, si l’on en croit une annonce faite récemment par les membres de la collaboration Atlas. Les physiciens ont mesuré un signal correspondant à ce mode de désintégration avec une signification de 4,1 sigma, comme ils le disent dans leur jargon. Cela signifie en gros que les chances que ce signal soit une simple fluctuation statistique sont inférieures à 0,007 %. Ce n’est pas encore une découverte, car il faudrait au moins 5 sigma, c'est-à-dire 0,00006 % de chance que les mesures soient un effet du hasard.

Pour aller plus loin, il faudra attendre le redémarrage du LHC en 2015. On espère surtout que les modes de désintégration du Higgs permettront d’avoir accès à de la nouvelle physique, comme la supersymétrie. Mais peut-être faudra-t-il attendre la mise en service de l’ILC pour cela.


A voir aussi sur Internet

Sur le même sujet

Vos réactions

Chargement des commentaires