Des chercheurs américains ont cultivé des tissus organiques sur un support issu de la nanoélectronique. Ces cultures « cyborgs » serviront aux biologistes pour étudier le fonctionnement d'un organe. On peut aussi y voir un nouveau pas vers une fusion harmonieuse de l’Homme et de la machine...

au sommaire


    Charles M. Lieber, chercheur de Harvard, dirige l'équipe qui a réalisé des tissus cyborgs intégrant des circuits nanoélectroniques. © Kris Snibbe

    Charles M. Lieber, chercheur de Harvard, dirige l'équipe qui a réalisé des tissus cyborgs intégrant des circuits nanoélectroniques. © Kris Snibbe

    Devant l'article publié dans la revue Nature Materials par des membres du Lieber group menés par l'un des professeurs de chimie de la célèbre université d'Harvard, Charles M. Lieber, on ne peut s'empêcher de penser à un fameux héros de comics américains des années 1980. Parmi ses nombreux superhéros, comme Captain America ou les Avengers, la maison Marvel compte aussi le personnage de Rom le chevalier de l'espace, un extraterrestre venu de la planète Galador, où l'on sait interfacer les tissus organiques avec des circuits électroniques. Ni vraiment un robotrobot ni une forme de vie biologique, Rom est une sorte de cyborg dont le corps est devenu presque indestructible, à la force surhumaine et apte à voyager sans dommage entre les étoiles.

    Les chercheurs de Harvard sont à des années-lumière de telles prouesses, mais ils sont tout de même parvenus à développer harmonieusement des cellules nerveuses et de muscle cardiaque sur un support contenant des capteurscapteurs nanoélectroniques. Ils ont ainsi créé des sortes de tissus cyborgscyborgs en intégrant un réseau tridimensionnel fonctionnel de fils nanométriques, portant des transistors et constituant des nanoelectronic scaffolds, ou nanoES (échafaudageséchafaudages nanoélectroniques en français) avec des tissus humains.

    Cette image montre un réseau de nanocapteurs (en bleu et en vert) aux côtés de neurones (rouges). Il s'agit d'une culture tissulaire de neurones de l'hippocampe d'un rat. © Charles M. Lieber

    Cette image montre un réseau de nanocapteurs (en bleu et en vert) aux côtés de neurones (rouges). Il s'agit d'une culture tissulaire de neurones de l'hippocampe d'un rat. © Charles M. Lieber

    On savait déjà faire croître des cellules pour former des tissus sur un support garni de capteurs électroniques ou bien insérer ces derniers à la surface d'un tissu en culture. Mais ces méthodes ont des limites, notamment parce que les capteurs perturbent le fonctionnement des cellules. Avec la technique mise au point par les chercheurs de Harvard, ce n'est plus vraiment le cas. Mieux, selon les mots de Charles Lieber, « grâce à cette technologie, pour la première fois, nous pouvons travailler à l'échelle des cellules des systèmes biologiques sans perturber fortement leur fonctionnement. En fin de compte, il s'agit ici de faire fusionner des tissus biologiques avec l'électronique de telle manière qu'il devient difficile de déterminer où se termine le tissu et où l'électronique commence ».

    Des nanoES pour surveiller et mesurer l'activité des cellules

    Pour réaliser ces tissus cyborgs, les chercheurs ont commencé par fabriquer un support formé d'un réseau de nanofilaments en silicium en 2D avec un maillage en polymère organique. Des nanoélectrodes connectées avec les nanofilaments ont ensuite été élaborées dans le maillage. Reliées à des nanotransistors, ces nanoélectrodes pouvaient transmettre des informations sur l'état de cellules. Le support ayant été dissous, on obtient alors une sorte d'éponge en 2D que l'on peut plier et rouler pour fabriquer différentes formes en trois dimensions et qui peuvent servir de tuteur pour la croissance d'un tissu organique en 3D.

    Au final, les nanocapteurs naturellement intégrés dans ce tissu peuvent mesurer l'activité électrique de cellules nerveuses, par exemple, ou de muscle cardiaquemuscle cardiaque, en réponse à des substances activessubstances actives. Comme l'ont montré les chercheurs, il est aussi possible de faire croître des vaisseaux sanguins sur ce nanoES et de mesurer les modifications de pH dans le tissu, simulant ainsi une réponse inflammatoire ou une ischémieischémie. On ouvre ainsi de nouvelles voies de recherche pour la médecine, par exemple pour la mise au point d'implants, ou pour la biologie, en permettant de simuler à l'échelle des cellules des phénomènes se déroulant dans un organe.